期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced ion acceleration using the high-energy petawatt PETAL laser 被引量:4
1
作者 D.Raffestin L.Lecherbourg +16 位作者 I.Lantúejoul B.Vauzour P.E.Masson-Laborde X.Davoine N.Blanchot J.L.Dubois X.Vaisseau E.d’Humières L.Gremillet a.duval Ch.Reverdin B.Rosse G.Boutoux J.E.Ducret Ch.Rousseaux V.Tikhonchuk D.Batani 《Matter and Radiation at Extremes》 SCIE CAS CSCD 2021年第5期62-79,共18页
The high-energy petawatt PETAL laser system was commissioned at CEA’s Laser M´egajoule facility during the 2017–2018 period.This paper reports in detail on the first experimental results obtained at PETAL on en... The high-energy petawatt PETAL laser system was commissioned at CEA’s Laser M´egajoule facility during the 2017–2018 period.This paper reports in detail on the first experimental results obtained at PETAL on energetic particle and photon generation from solid foil targets,with special emphasis on proton acceleration.Despite a moderately relativistic(<1019 W/cm^(2))laser intensity,proton energies as high as 51 MeV have been measured significantly above those expected from preliminary numerical simulations using idealized interaction conditions.Multidimensional hydrodynamic and kinetic simulations,taking into account the actual laser parameters,show the importance of the energetic electron production in the extended low-density preplasma created by the laser pedestal.This hot-electron generation occurs through two main pathways:(i)stimulated backscattering of the incoming laser light,triggering stochastic electron heating in the resulting counterpropagating laser beams;(ii)laser filamentation,leading to local intensifications of the laser field and plasma channeling,both of which tend to boost the electron acceleration.Moreover,owing to the large(∼100μm)waist and picosecond duration of the PETAL beam,the hot electrons can sustain a high electrostatic field at the target rear side for an extended period,thus enabling efficient target normal sheath acceleration of the rear-side protons.The particle distributions predicted by our numerical simulations are consistent with the measurements. 展开更多
关键词 ACCELERATION high ENERGY
下载PDF
Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams 被引量:1
2
作者 B.Martinez S.N.Chen +15 位作者 S.Bolaños N.Blanchot G.Boutoux W.Cayzac C.Courtois X.Davoine a.duval V.Horny I.Lantuejoul L.Le Deroff P.E.Masson-Laborde G.Sary B.Vauzour R.Smets L.Gremillet J.Fuchs 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2022年第2期8-17,共10页
Laser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration.We examine this through partic... Laser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration.We examine this through particle-in-cell and Monte Carlo simulations that model,respectively,the laser acceleration of protons from thin-foil targets and their subsequent conversion into neutrons in secondary lead targets.Laser parameters relevant to the 0.5 PW LMJ-PETAL and 0.6–6 PW Apollon systems are considered.Owing to its high intensity,the 20-fs-duration 0.6 PW Apollon laser is expected to accelerate protons up to above 100MeV,thereby unlocking efficient neutron generation via spallation reactions.As a result,despite a 30-fold lower pulse energy than the LMJ-PETAL laser,the 0.6 PW Apollon laser should perform comparably well both in terms of neutron yield and flux.Notably,we predict that very compact neutron pulses,of∼10 ps duration and∼100μm spot size,can be released provided the lead convertor target is thin enough(∼100μm).These sources are characterized by extreme fluxes,of the order of 10^(23) n cm^(−2) s^(−1),and even ten times higher when using the 6 PW Apollon laser.Such values surpass those currently achievable at large-scale accelerator-based neutron sources(∼10^(16) n cm^(−2) s^(−1)),or reported from previous laser experiments using low-Z converters(∼10^(18) n cm^(−2) s^(−1)).By showing that such laser systems can produce neutron pulses significantly brighter than existing sources,our findings open a path toward attractive novel applications,such as flash neutron radiography and laboratory studies of heavy-ion nucleosynthesis. 展开更多
关键词 thereby ATTRACTIVE EXTREME
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部