期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization
1
作者 W.Yao a.fazzini +19 位作者 S.N.Chen K.Burdonov P.Antici J.B´eard S.Bolaños A.Ciardi R.Diab E.D.Filippov S.Kisyov V.Lelasseux M.Miceli Q.Moreno V.Nastasa S.Orlando S.Pikuz D.C.Popescu G.Revet X.Ribeyre E.d’Humi`eres J.Fuchs 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2022年第1期15-28,共14页
Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of nonthermal particles and high-energy radiation.In the absence of particle collisions in the system,theory shows that t... Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of nonthermal particles and high-energy radiation.In the absence of particle collisions in the system,theory shows that the interaction of an expanding plasma with a pre-existing electromagnetic structure(as in our case)is able to induce energy dissipation and allow shock formation.Shock formation can alternatively take place when two plasmas interact,through microscopic instabilities inducing electromagnetic fields that are able in turn to mediate energy dissipation and shock formation.Using our platform in which we couple a rapidly expanding plasma induced by high-power lasers(JLF/Titan at LLNL and LULI2000)with high-strength magnetic fields,we have investigated the generation of a magnetized collisionless shock and the associated particle energization.We have characterized the shock as being collisionless and supercritical.We report here on measurements of the plasma density and temperature,the electromagnetic field structures,and the particle energization in the experiments,under various conditions of ambient plasma and magnetic field.We have also modeled the formation of the shocks using macroscopic hydrodynamic simulations and the associated particle acceleration using kinetic particle-in-cell simulations.As a companion paper to Yao et al.[Nat.Phys.17,1177–1182(2021)],here we show additional results of the experiments and simulations,providing more information to allow their reproduction and to demonstrate the robustness of our interpretation of the proton energization mechanism as being shock surfing acceleration. 展开更多
关键词 field COLLISION shock
下载PDF
Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level
2
作者 K.Burdonov a.fazzini +45 位作者 V.Lelasseux J.Albrecht P.Antici Y.Ayoul A.Beluze D.Cavanna T.Ceccotti M.Chabanis A.Chaleil S.N.Chen Z.Chen F.Consoli M.Cuciuc X.Davoine J.P.Delaneau E.d’Humieres J.-L.Dubois C.Evrard E.Filippov A.Freneaux P.Forestier-Colleoni L.Gremillet V.Horny L.Lancia L.Lecherbourg N.Lebas A.Leblanc W.Ma L.Martin F.Negoita J.-L.Paillard D.Papadopoulos F.Perez S.Pikuz G.Qi F.Quere L.Ranc P.-A.Soderstrom M.Sciscio S.Sun S.Vallieres P.Wang W.Yao F.Mathieu P.Audebert J.Fuchs 《Matter and Radiation at Extremes》 SCIE CAS CSCD 2021年第6期12-25,共14页
We present the results of the first commissioning phase of the short-focal-length area of the Apollon laser facility(located in Saclay,France),which was performed with the first available laser beam(F2),scaled to a no... We present the results of the first commissioning phase of the short-focal-length area of the Apollon laser facility(located in Saclay,France),which was performed with the first available laser beam(F2),scaled to a nominal power of 1 PW.Under the conditions that were tested,this beam delivered on-target pulses of 10 J average energy and 24 fs duration.Several diagnostics were fielded to assess the performance of the facility.The on-target focal spot and its spatial stability,the temporal intensity profile prior to the main pulse,and the resulting density gradient formed at the irradiated side of solid targets have been thoroughly characterized,with the goal of helping users design future experiments.Emissions of energetic electrons,ions,and electromagnetic radiation were recorded,showing good laser-to-target coupling efficiency and an overall performance comparable to that of similar international facilities.This will be followed in 2022 by a further commissioning stage at the multipetawatt level. 展开更多
关键词 performance beam NOMINAL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部