This paper is concerned with a buckling analysis of an embedded nanoplate integrated with magnetoelectroelastic(MEE) layers based on a nonlocal magnetoelectroelasticity theory. A surrounding elastic medium is simulate...This paper is concerned with a buckling analysis of an embedded nanoplate integrated with magnetoelectroelastic(MEE) layers based on a nonlocal magnetoelectroelasticity theory. A surrounding elastic medium is simulated by the Pasternak foundation that considers both shear and normal loads. The sandwich nanoplate(SNP) consists of a core that is made of metal and two MEE layers on the upper and lower surfaces of the core made of Ba Ti O3/Co Fe2 O4. The refined zigzag theory(RZT) is used to model the SNP subject to both external electric and magnetic potentials. Using an energy method and Hamilton’s principle, the governing motion equations are obtained, and then solved analytically. A detailed parametric study is conducted, concentrating on the combined effects of the small scale parameter, external electric and magnetic loads, thicknesses of MEE layers, mode numbers, and surrounding elastic medium. It is concluded that increasing the small scale parameter decreases the critical buckling loads.展开更多
基金Project supported by the University of Kashan(No.574600/33)
文摘This paper is concerned with a buckling analysis of an embedded nanoplate integrated with magnetoelectroelastic(MEE) layers based on a nonlocal magnetoelectroelasticity theory. A surrounding elastic medium is simulated by the Pasternak foundation that considers both shear and normal loads. The sandwich nanoplate(SNP) consists of a core that is made of metal and two MEE layers on the upper and lower surfaces of the core made of Ba Ti O3/Co Fe2 O4. The refined zigzag theory(RZT) is used to model the SNP subject to both external electric and magnetic potentials. Using an energy method and Hamilton’s principle, the governing motion equations are obtained, and then solved analytically. A detailed parametric study is conducted, concentrating on the combined effects of the small scale parameter, external electric and magnetic loads, thicknesses of MEE layers, mode numbers, and surrounding elastic medium. It is concluded that increasing the small scale parameter decreases the critical buckling loads.