The root system is critical for the survival of nearly all land plants and a key target for improving abiotic stress tolerance,nutrient accumulation,and yield in crop species.Although many methods of root phenotyping ...The root system is critical for the survival of nearly all land plants and a key target for improving abiotic stress tolerance,nutrient accumulation,and yield in crop species.Although many methods of root phenotyping exist,within field studies,one of the most popular methods is the extraction and measurement of the upper portion of the root system,known as the root crown,followed by trait quantification based on manual measurements or 2D imaging.However,2D techniques are inherently limited by the information available from single points of view.Here,we used X-ray computed tomography to generate highly accurate 3D models of maize root crowns and created computational pipelines capable of measuring 71 features from each sample.This approach improves estimates of the genetic contribution to root system architecture and is refined enough to detect various changes in global root system architecture over developmental time as well as more subtle changes in root distributions as a result of environmental differences.We demonstrate that root pulling force,a high-throughput method of root extraction that provides an estimate of root mass,is associated with multiple 3D traits from our pipeline.Our combined methodology can therefore be used to calibrate and interpret root pulling force measurements across a range of experimental contexts or scaled up as a stand-alone approach in large genetic studies of root system architecture.展开更多
基金the Department of Energy under Award number:DE-AR0000826 to J.K.M.and C.N.T.the National Science Foundation under Award number:(PGRP)IOS-1638507 to C.N.T.the U.S.Department of Agriculture under Award number:2018-67012-28084 to M.R.S.
文摘The root system is critical for the survival of nearly all land plants and a key target for improving abiotic stress tolerance,nutrient accumulation,and yield in crop species.Although many methods of root phenotyping exist,within field studies,one of the most popular methods is the extraction and measurement of the upper portion of the root system,known as the root crown,followed by trait quantification based on manual measurements or 2D imaging.However,2D techniques are inherently limited by the information available from single points of view.Here,we used X-ray computed tomography to generate highly accurate 3D models of maize root crowns and created computational pipelines capable of measuring 71 features from each sample.This approach improves estimates of the genetic contribution to root system architecture and is refined enough to detect various changes in global root system architecture over developmental time as well as more subtle changes in root distributions as a result of environmental differences.We demonstrate that root pulling force,a high-throughput method of root extraction that provides an estimate of root mass,is associated with multiple 3D traits from our pipeline.Our combined methodology can therefore be used to calibrate and interpret root pulling force measurements across a range of experimental contexts or scaled up as a stand-alone approach in large genetic studies of root system architecture.