We wrote and used an automated flare detection Python script to search for super-flares on main sequence stars of types A,F,G,K and M in Kepler's long-cadence data from Q0 to Q17.We studied the statistical propert...We wrote and used an automated flare detection Python script to search for super-flares on main sequence stars of types A,F,G,K and M in Kepler's long-cadence data from Q0 to Q17.We studied the statistical properties of the occurrence rate of super-flares.For the G-type data set,we compared our results with the previous results of Okamoto et al.by splitting the data set into four rotational bands.We found similar power-law indices for the flare frequency distribution.Hence,we show that inclusion of a high-pass filter,sample biases,gyrochronology and completeness of flare detection is of no significance,as our results are similar to those of Okamoto et al.We estimated that a super-flare on G-type dwarfs with energy of 10^(35) erg occurs on a star once every 4360 yr.We found 4637 super-flares on 1896 G-type dwarfs.Moreover,we identified 321,1125,4538 and 5445 super-flares on 136,522,770 and 312 dwarfs of types A,F,K and M,respectively.We ascertained that the occurrence rate(dN/dE)of super-flares versus flare energy,E,shows a power-law distribution with dN/dE∝E^(-α),whereα■2.0 to 2.1 for the spectral types from F-type to M-type stars.In contrast,the obtainedα■1.3 for A-type stars suggests that the flare conditions differ from those of the other spectral-type stars.We note an increase in flare incidence rate in F-type to M-type stars and a decrease in A-type to F-type stars.展开更多
In our previous work,we investigated the occurrence rate of super-flares on various types of stars and their statistical properties,with a particular focus on G-type dwarfs,using entire Kepler data.The said study also...In our previous work,we investigated the occurrence rate of super-flares on various types of stars and their statistical properties,with a particular focus on G-type dwarfs,using entire Kepler data.The said study also considered how the statistics change with stellar rotation period,which in turn,had to be determined.Using such new data,as a by-product,we found 138 Kepler IDs of F-and G-type main sequence stars with rotation periods less than a day(P_(rot)<1 day).On one hand,previous studies have revealed short activity cycles in F-type and G-type stars and the question investigated was whether or not short-term activity cycles are a common phenomenon in these stars.On the other hand,extensive studies exist which establish an empirical connection between a star's activity cycle and rotation periods.In this study,we compile all available Kepler data with P_(rot)<1 day,and rely on an established empirical relation between P_(cyc)and P_(rot)with the aim to provide predictions for very short 5.09≤P_(cyc)≤38.46 day cases in a tabular form.We propose an observation to measure P_(cyc)using a monitoring program of stellar activity(e.g.,activity-related chromospheric emission S-index)or a similar means for the Kepler IDs found in this study in order put the derived empirical relations between P_(cyc)and P_(rot)derived here to the test.We also propose an alternative method for measuring very short P_(cyc),using flare-detection algorithms applied to future space mission data.展开更多
In our previous work,we searched for superflares on different types of stars while focusing on G-type dwarfs using entire Kepler data to study statistical properties of the occurrence rate of superflares.Using these n...In our previous work,we searched for superflares on different types of stars while focusing on G-type dwarfs using entire Kepler data to study statistical properties of the occurrence rate of superflares.Using these new data,as a byproduct,we found 14 cases of superflare detection on 13 slowly rotating Sun-like stars with rotation periods of24.5–44 days.This result supports the earlier conclusion by others that the Sun may possibly undergo a surprise superflare.Moreover,we found 12 and seven new cases of detection of exceptionally large amplitude superflares on six and four main sequence stars of G-and M-type,respectively.No large-amplitude flares were detected in A,F or K main sequence stars.Here we present preliminary analysis of these cases.The superflare detection,i.e.,an estimation of flare energy,is based on a more accurate method compared to previous studies.We fit an exponential decay function to flare light curves and study the relation between e-folding decay time,τ,versus flare amplitude and flare energy.We find that for slowly rotating Sun-like stars,large values ofτcorrespond to small flare energies and small values ofτcorrespond to high flare energies considered.Similarly,τis large for small flare amplitudes andτis small for large amplitudes considered.However,there is no clear relation between these parameters for large amplitude superflares in the main sequence G-and M-type stars,as we could not establish clear functional dependence between the parameters via standard fitting algorithms.展开更多
基金operated by the Association of Universities for Research in Astronomy,Inc.,under NASA contract NAS5-26555provided by the NASA Office of Space Science via grant NNX13AC07Gthe financial support of her PhD scholarship,held at Queen Mary University of London。
文摘We wrote and used an automated flare detection Python script to search for super-flares on main sequence stars of types A,F,G,K and M in Kepler's long-cadence data from Q0 to Q17.We studied the statistical properties of the occurrence rate of super-flares.For the G-type data set,we compared our results with the previous results of Okamoto et al.by splitting the data set into four rotational bands.We found similar power-law indices for the flare frequency distribution.Hence,we show that inclusion of a high-pass filter,sample biases,gyrochronology and completeness of flare detection is of no significance,as our results are similar to those of Okamoto et al.We estimated that a super-flare on G-type dwarfs with energy of 10^(35) erg occurs on a star once every 4360 yr.We found 4637 super-flares on 1896 G-type dwarfs.Moreover,we identified 321,1125,4538 and 5445 super-flares on 136,522,770 and 312 dwarfs of types A,F,K and M,respectively.We ascertained that the occurrence rate(dN/dE)of super-flares versus flare energy,E,shows a power-law distribution with dN/dE∝E^(-α),whereα■2.0 to 2.1 for the spectral types from F-type to M-type stars.In contrast,the obtainedα■1.3 for A-type stars suggests that the flare conditions differ from those of the other spectral-type stars.We note an increase in flare incidence rate in F-type to M-type stars and a decrease in A-type to F-type stars.
基金Princess Nourah Bint Abdulrahman University,Riyadh,Saudi ArabiaRoyal Embassy of Saudi Arabia Cultural Bureau in London,UK for the financial support。
文摘In our previous work,we investigated the occurrence rate of super-flares on various types of stars and their statistical properties,with a particular focus on G-type dwarfs,using entire Kepler data.The said study also considered how the statistics change with stellar rotation period,which in turn,had to be determined.Using such new data,as a by-product,we found 138 Kepler IDs of F-and G-type main sequence stars with rotation periods less than a day(P_(rot)<1 day).On one hand,previous studies have revealed short activity cycles in F-type and G-type stars and the question investigated was whether or not short-term activity cycles are a common phenomenon in these stars.On the other hand,extensive studies exist which establish an empirical connection between a star's activity cycle and rotation periods.In this study,we compile all available Kepler data with P_(rot)<1 day,and rely on an established empirical relation between P_(cyc)and P_(rot)with the aim to provide predictions for very short 5.09≤P_(cyc)≤38.46 day cases in a tabular form.We propose an observation to measure P_(cyc)using a monitoring program of stellar activity(e.g.,activity-related chromospheric emission S-index)or a similar means for the Kepler IDs found in this study in order put the derived empirical relations between P_(cyc)and P_(rot)derived here to the test.We also propose an alternative method for measuring very short P_(cyc),using flare-detection algorithms applied to future space mission data.
基金Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contractsRiyadh,Saudi Arabia and the Royal Embassy of Saudi Arabia Cultural Bureau in London,UK for the financial support of her PhD scholarship,held at Queen Mary University of London。
文摘In our previous work,we searched for superflares on different types of stars while focusing on G-type dwarfs using entire Kepler data to study statistical properties of the occurrence rate of superflares.Using these new data,as a byproduct,we found 14 cases of superflare detection on 13 slowly rotating Sun-like stars with rotation periods of24.5–44 days.This result supports the earlier conclusion by others that the Sun may possibly undergo a surprise superflare.Moreover,we found 12 and seven new cases of detection of exceptionally large amplitude superflares on six and four main sequence stars of G-and M-type,respectively.No large-amplitude flares were detected in A,F or K main sequence stars.Here we present preliminary analysis of these cases.The superflare detection,i.e.,an estimation of flare energy,is based on a more accurate method compared to previous studies.We fit an exponential decay function to flare light curves and study the relation between e-folding decay time,τ,versus flare amplitude and flare energy.We find that for slowly rotating Sun-like stars,large values ofτcorrespond to small flare energies and small values ofτcorrespond to high flare energies considered.Similarly,τis large for small flare amplitudes andτis small for large amplitudes considered.However,there is no clear relation between these parameters for large amplitude superflares in the main sequence G-and M-type stars,as we could not establish clear functional dependence between the parameters via standard fitting algorithms.