In present work,the vertically aligned Ni S nano-flakes composed thin film is prepared by anionic exchange process in which hydrothermally prepared Ni(OH)2is used as a parent thin film and Na2S as a sulfide ion sour...In present work,the vertically aligned Ni S nano-flakes composed thin film is prepared by anionic exchange process in which hydrothermally prepared Ni(OH)2is used as a parent thin film and Na2S as a sulfide ion source.This synthesis process produced fully transformed and shape-controlled nano-flakes of Ni S from nano-flowers of Ni(OH)2.The electrochemical supercapacitor properties of Ni S electrode are studied with cyclic voltammetry(CV),galvonostatic charge discharge(GCD)and electrochemical impedance spectroscopy(EIS)techniques.Highly porous surface area(85 m^2/g)of Ni S nano-flakes makes large material contribution in electrochemical reaction stretching specific capacitance(Cs)of 880 F/g at scan rate of 5 m V/s and 90%electrochemical stability up to 4000 CV cycles in 2 M KOH electrolyte.Further,the flexible solid-state symmetric supercapacitor device(Ni S/PVA–Li ClO4/Ni S)has been fabricated using Ni S electrodes with polyvinyl alcohol(PVA)–lithium perchlorate(Li ClO4)gel electrolyte.The Ni S/PVA–Li ClO4/Ni S device exhibits specific capacitance of 56 F/g with specific energy of 14.98 Wh/kg and excellent cycling stability after 2000 cycles.In addition,the Ni S/PVA–Li ClO4/Ni S device demonstrates illumination of red light emitting diode(LED)for 60 s,which confirms the practical applicability of Ni S/PVA–Li ClO4/Ni S device in energy storage.展开更多
基金the Human Resources Development program(No.20124010203180)of Korea Institute of Energy Technology EvaluationThe basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(NRF-2015R1A2A2A01006856)
文摘In present work,the vertically aligned Ni S nano-flakes composed thin film is prepared by anionic exchange process in which hydrothermally prepared Ni(OH)2is used as a parent thin film and Na2S as a sulfide ion source.This synthesis process produced fully transformed and shape-controlled nano-flakes of Ni S from nano-flowers of Ni(OH)2.The electrochemical supercapacitor properties of Ni S electrode are studied with cyclic voltammetry(CV),galvonostatic charge discharge(GCD)and electrochemical impedance spectroscopy(EIS)techniques.Highly porous surface area(85 m^2/g)of Ni S nano-flakes makes large material contribution in electrochemical reaction stretching specific capacitance(Cs)of 880 F/g at scan rate of 5 m V/s and 90%electrochemical stability up to 4000 CV cycles in 2 M KOH electrolyte.Further,the flexible solid-state symmetric supercapacitor device(Ni S/PVA–Li ClO4/Ni S)has been fabricated using Ni S electrodes with polyvinyl alcohol(PVA)–lithium perchlorate(Li ClO4)gel electrolyte.The Ni S/PVA–Li ClO4/Ni S device exhibits specific capacitance of 56 F/g with specific energy of 14.98 Wh/kg and excellent cycling stability after 2000 cycles.In addition,the Ni S/PVA–Li ClO4/Ni S device demonstrates illumination of red light emitting diode(LED)for 60 s,which confirms the practical applicability of Ni S/PVA–Li ClO4/Ni S device in energy storage.