We study thermodynamics of the parabolic Lemaitre-Tolman-Bondi(LTB) cosmology supported by a perfect Suid source.This model is the natural generalization of the Sat Friedmann-Robertson-Walker(FRW) universe,and describ...We study thermodynamics of the parabolic Lemaitre-Tolman-Bondi(LTB) cosmology supported by a perfect Suid source.This model is the natural generalization of the Sat Friedmann-Robertson-Walker(FRW) universe,and describes an inhomogeneous universe with spherical symmetry.After reviewing some basic equations in the parabolic LTB cosmology,we obtain a relation for the deceleration parameter in this model.We also obtain a condition for which the universe undergoes an accelerating phase at the present time.We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology.We find out that in LTB model of cosmology,the apparent horizon's entropy could be feeded by a term,which incorporates the effects of the inhomogeneity.We consider this result and get a relation for the total entropy evolution,which is used to examine the generalized second law of thermodynamics for an accelerating universe.We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model.展开更多
In this paper we consider quintessence reconstruction of interacting holographic dark energy in a non-fiat background. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the hor...In this paper we consider quintessence reconstruction of interacting holographic dark energy in a non-fiat background. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L = at(t). To this end we construct a quintessence model by a real, single scalar field. Evolution of the potential, V(φ), as well as the dynamics of the scalar field, φ, is obtained according to the respective holographic dark energy. The reconstructed potentials show a cosmological constant behavior for the present time. We constrain the model parameters in a fiat universe by using the observational data, and applying the Monte Carlo Markov chain simulation. We obtain the best fit values of the holographic dark energy model and the interacting parameters as c=1.0576-0.6632-0.6632^+0.3010+0.3052 and ζ =0.2433-0.2251-.2251^+0.6373+0.6373 , respectively. From the data fitting results we also find that the model can cross the phantom line in the present universe where the best fit value of the dark energy equation of state is WD=-1.2429.展开更多
基金Supported financially by Research Institute for Astronomy&Astrophysics of Maragha(RIAAM),Iran
文摘We study thermodynamics of the parabolic Lemaitre-Tolman-Bondi(LTB) cosmology supported by a perfect Suid source.This model is the natural generalization of the Sat Friedmann-Robertson-Walker(FRW) universe,and describes an inhomogeneous universe with spherical symmetry.After reviewing some basic equations in the parabolic LTB cosmology,we obtain a relation for the deceleration parameter in this model.We also obtain a condition for which the universe undergoes an accelerating phase at the present time.We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology.We find out that in LTB model of cosmology,the apparent horizon's entropy could be feeded by a term,which incorporates the effects of the inhomogeneity.We consider this result and get a relation for the total entropy evolution,which is used to examine the generalized second law of thermodynamics for an accelerating universe.We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model.
基金supported financially by Research Institute for Astronomy & Astrophysics of Maragha (RIAAM), Iran
文摘In this paper we consider quintessence reconstruction of interacting holographic dark energy in a non-fiat background. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L = at(t). To this end we construct a quintessence model by a real, single scalar field. Evolution of the potential, V(φ), as well as the dynamics of the scalar field, φ, is obtained according to the respective holographic dark energy. The reconstructed potentials show a cosmological constant behavior for the present time. We constrain the model parameters in a fiat universe by using the observational data, and applying the Monte Carlo Markov chain simulation. We obtain the best fit values of the holographic dark energy model and the interacting parameters as c=1.0576-0.6632-0.6632^+0.3010+0.3052 and ζ =0.2433-0.2251-.2251^+0.6373+0.6373 , respectively. From the data fitting results we also find that the model can cross the phantom line in the present universe where the best fit value of the dark energy equation of state is WD=-1.2429.