期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Efficient Morphological Segmentation of Brain Hemorrhage Stroke Lesion Through MultiResUNet 被引量:1
1
作者 R.Shijitha P.Karthigaikumar a.stanly paul 《Computers, Materials & Continua》 SCIE EI 2022年第3期5233-5249,共17页
Brain Hemorrhagic stroke is a serious malady that is caused by the drop in blood flow through the brain and causes the brain to malfunction.Precise segmentation of brain hemorrhage is crucial,so an enhanced segmentati... Brain Hemorrhagic stroke is a serious malady that is caused by the drop in blood flow through the brain and causes the brain to malfunction.Precise segmentation of brain hemorrhage is crucial,so an enhanced segmentation is carried out in this research work.The brain image of various patients has taken using an MRI scanner by the utilization of T1,T2,and FLAIR sequence.This work aims to segment the Brain Hemorrhagic stroke using deep learning-based Multi-resolution UNet(multires UNet)through morphological operations.It is hard to precisely segment the brain lesions to extract the existing region of stroke.This crucial step is accomplished by this proposed MMU-Net methodology by precise segmentation of stroke lesions.The proposed method efficiently determines the hemorrhagic stroke with improved accuracy of 95%compared with the existing segmentation techniques such as U-net++,ResNet,Multires UNET and 3D-ResU-Net and also provides improved performance of 2D and 3D U-Net with an enhanced outcome.The performancemeasure of the proposed methodology acquires an improved accuracy,precision ratio,sensitivity,and specificity rate of 0.07%,0.04%,0.04%,and 0.05%in comparison to U-net,ResNet,Multires UNET and 3D-ResU-Net techniques respectively. 展开更多
关键词 Brain hemorrhage magnetic resonance imaging segmentation multi-resolutional U-Net morphological operations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部