Effect of critical beam radius on self-focusing of cosh-Gaussian laser beams in collisionless magnetized plasma under ponderomotive nonlinearity forms the main core of present work. To investigate propagation dynamics...Effect of critical beam radius on self-focusing of cosh-Gaussian laser beams in collisionless magnetized plasma under ponderomotive nonlinearity forms the main core of present work. To investigate propagation dynamics of cosh-Gaussian laser beams in collisionless magnetized plasma, well established parabolic equation approach under WKB and paraxial approximations is employed. Our study is crucially pivoted on the concept of critical curve and subsequent determination of numerical interval for decentered parameter to sustain the competition between diffraction and self-focusing during the propagation of laser beam. Additionally, in the present study an interesting feature in the self-focusing region of the critical curve has been attempted for different values of decentered parameter.展开更多
文摘Effect of critical beam radius on self-focusing of cosh-Gaussian laser beams in collisionless magnetized plasma under ponderomotive nonlinearity forms the main core of present work. To investigate propagation dynamics of cosh-Gaussian laser beams in collisionless magnetized plasma, well established parabolic equation approach under WKB and paraxial approximations is employed. Our study is crucially pivoted on the concept of critical curve and subsequent determination of numerical interval for decentered parameter to sustain the competition between diffraction and self-focusing during the propagation of laser beam. Additionally, in the present study an interesting feature in the self-focusing region of the critical curve has been attempted for different values of decentered parameter.