期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microstructure and mechanical and corrosion properties of hot-extruded Mg–Zn–Ca–(Mn)biodegradable alloys 被引量:12
1
作者 V.E.Bazhenov a.v.li +6 位作者 A.A.Komissarov A.V.Koltygin S.A.Tavolzhanskii V.A.Bautin O.O.Voropaeva A.M.Mukhametshina A.A.Tokar 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1436-1451,共16页
Biodegradable Mg-based implants are widely used in clinical applications because they exhibit mechanical properties comparable to those of human bone and require no revision surgery for their removal.Among Mg-based al... Biodegradable Mg-based implants are widely used in clinical applications because they exhibit mechanical properties comparable to those of human bone and require no revision surgery for their removal.Among Mg-based alloys,Mg–Zn–Ca–(Mn)alloys have been extensively investigated for medical applications because the constituent elements of these alloys,Mg,Zn,Ca,and Mn,are present in human tissues as nutrient elements.In this study,we investigated the effect of the hot extrusion temperature on the microstructure,mechanical properties,and biodegradation rate of Mg–Zn–Ca–(Mn)alloys.The results showed that the addition of Mn and a decrease in the extrusion temperature resulted in grain refinement followed by an increase in the strength and a decrease in the elongation at fracture of the alloys.The alloys showed different mechanical properties along the directions parallel and perpendicular to the extrusion direction.The corrosion test of the alloys in the Hanks’solution revealed that the addition of Mn significantly reduced the corrosion rate of the alloys.The Mg–2 wt%Zn–0.7 wt%Ca–1 wt%Mn alloy hot-extruded at 300℃ with an ultimate tensile strength of 278MPa,an yield strength of 229MPa,an elongation at fracture of 10%,and a corrosion rate of 0.3 mm/year was found to be suitable for orthopedic implants. 展开更多
关键词 Biodegradable Mg alloy Mg–Zn–Ca–(Mn) Hot extrusion Mechanical properties Corrosion rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部