ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensit...ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.展开更多
Purpose: To report an acute monocular retinal vascular occlusion in a patient with sickle cell trait and glaucoma secondary to traumatic hyphema. Methods and Results: Case report. A 35 year old Arab man who sustained ...Purpose: To report an acute monocular retinal vascular occlusion in a patient with sickle cell trait and glaucoma secondary to traumatic hyphema. Methods and Results: Case report. A 35 year old Arab man who sustained blunt trauma to his right eye was hospitalized with hyphema, increased intraocular pres-展开更多
The design and the early commissioning of the ELI-Beamlines laser facility’s 30 J,30 fs,10 Hz HAPLS(High-repetitionrate Advanced Petawatt Laser System)beam transport(BT)system to the P3 target chamber are described i...The design and the early commissioning of the ELI-Beamlines laser facility’s 30 J,30 fs,10 Hz HAPLS(High-repetitionrate Advanced Petawatt Laser System)beam transport(BT)system to the P3 target chamber are described in detail.It is the world’s first and with 54 m length,the longest distance high average power petawatt(PW)BT system ever built.It connects the HAPLS pulse compressor via the injector periscope with the 4.5 m diameter P3 target chamber of the plasma physics group in hall E3.It is the largest target chamber of the facility and was connected first to the BT system.The major engineering challenges are the required high vibration stability mirror support structures,the high pointing stability optomechanics as well as the required levels for chemical and particle cleanliness of the vacuum vessels to preserve the high laser damage threshold of the dielectrically coated high-power mirrors.A first commissioning experiment at low pulse energy shows the full functionality of the BT system to P3 and the novel experimental infrastructure.展开更多
基金The authors acknowledge support from the project ELI:Extreme Light Infrastructure from European Regional Devel-opment(CZ.02.1.01/0.0/0.0/15-008/0000162)Also supported by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15-003/0000449)from European Regional Development Fund.
文摘ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.
文摘Purpose: To report an acute monocular retinal vascular occlusion in a patient with sickle cell trait and glaucoma secondary to traumatic hyphema. Methods and Results: Case report. A 35 year old Arab man who sustained blunt trauma to his right eye was hospitalized with hyphema, increased intraocular pres-
基金The authors acknowledge support from the project Advanced Research Using High-Intensity Laser-Produced Photons and Particles(ADONIS)(CZ.02.1.01/0.0/0.0/16—019/0000789)by the project High Field Initiative(HiFI)(CZ.02.1.01/0.0/0.0/15_003/0000449),both from European Regional Development Fund.
文摘The design and the early commissioning of the ELI-Beamlines laser facility’s 30 J,30 fs,10 Hz HAPLS(High-repetitionrate Advanced Petawatt Laser System)beam transport(BT)system to the P3 target chamber are described in detail.It is the world’s first and with 54 m length,the longest distance high average power petawatt(PW)BT system ever built.It connects the HAPLS pulse compressor via the injector periscope with the 4.5 m diameter P3 target chamber of the plasma physics group in hall E3.It is the largest target chamber of the facility and was connected first to the BT system.The major engineering challenges are the required high vibration stability mirror support structures,the high pointing stability optomechanics as well as the required levels for chemical and particle cleanliness of the vacuum vessels to preserve the high laser damage threshold of the dielectrically coated high-power mirrors.A first commissioning experiment at low pulse energy shows the full functionality of the BT system to P3 and the novel experimental infrastructure.