The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment...The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment-friendly and energy-efficient avenues to synthesize NH_(3)at mild conditions but demands efficient electrocatalysts for the N_(2)reduction reaction(NRR).Herein we report for the first time that commercial indium-tin oxide glass(ITO/G)can be used as a catalyst electrode toward artificial N_(2)fixation,as it demonstrates excellent selectivity at mild conditions.Such ITO/G delivers excellent NRR performance with a NH_(3)yield of 1.06×10^(-10) mol s^(-1) cm^(-2) and a faradaic efficiency of 6.17%at-0.40 V versus the reversible hydrogen electrode(RHE)in 0.5 M LiClO4.Furthermore,the ITO/G also possesses good electrochemical stability and durability.Finally,the possible reaction mechanism for the NRR on the ITO catalysts was explored using first-principles calculations.展开更多
Electrochemical N_(2) reduction provides a green and sustainable alternative to the Haber-Bosch technology for NH_(3 )synthesis.However,the extreme inertness of N_(2) molecules is a formidable challenge,which requires...Electrochemical N_(2) reduction provides a green and sustainable alternative to the Haber-Bosch technology for NH_(3 )synthesis.However,the extreme inertness of N_(2) molecules is a formidable challenge,which requires the development of an active electrocatalyst to drive the N_(2) reduction reaction(NRR)for NH_(3) production at ambient conditions.Herein,we demonstrate the development of La-doped TiO_(2) nanorods as an efficient NRR electrocatalyst for ambient NH3 synthesis.The optimized La-TiO_(2) catalyst offers a large NH_(3) yield of 23.06 pg h1 mgcat 1 and a high Faradaic efficiency of 14.54%at-0.70 V versus reversible hydrogen electrode in 0.1 M L1CIO_(4),outperforming most La-and Ti-based catalysts reported before.Significantly,it also demonstrates high electrochemical stability and its activity decay is negligible after 48 h test.The mechanism is further revealed by density functional theory calculations.展开更多
The exploration of polymer electrolyte in the field of dye sensitized solar cell(DSSC) can contribute to increase the invention of renewable energy applications. In the present work, the influence of imidazole on the ...The exploration of polymer electrolyte in the field of dye sensitized solar cell(DSSC) can contribute to increase the invention of renewable energy applications. In the present work, the influence of imidazole on the poly(vinylidene fluoride)(PVDF)–poly(methyl methacrylate)(PMMA)–Ethylene carbonate(EC)–KI–I2 polymer blend electrolytes has been evaluated. The different weight percentages of imidazole added into polymer blend electrolytes have been prepared by solution casting. The prepared films were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), thermogravimetric analysis(TGA), UV–visible spectra, photoluminescence spectra and impedance spectroscopy. The surface roughness texture of the film was analyzed by atomic force microscopy(AFM). The ionic conductivity of the optimized polymer blend electrolyte was determined by impedance measurement, which is 1.95 × 10-3 S·cm-1 at room temperature. The polymer electrolyte containing 40 wt% of imidazole content exhibits the highest photo-conversion efficiency of 3.04%under the illumination of 100 m W·cm-2. Moreover, a considerable enhancement in the stability of the DSSC device was demonstrated.展开更多
1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide(1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2Hbenzo[e][1,2]thiazine-3-carboxylate 1,1-dioxid...1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide(1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2Hbenzo[e][1,2]thiazine-3-carboxylate 1,1-dioxide(2) were synthesized, and characterized by spectroscopic techniques; 1H-NMR and infrared(IR) spectroscopy. Crystals of 1 and 2 were grown by slow evaporation of methanol and ethyl acetate, respectively and their crystal structures were investigated by single-crystal X-ray diffraction analysis. Geometric properties were calculated by the B3 LYP method of density functional theory(DFT) at the 6-31G+(d) basis set to compare with the experimental data. Simulated properties were found in strong agreement with the experimental ones. Intermolecular forces have also been modeled in order to investigate the strength of packing and strong hydrogen bonding was observed in both compounds 1 and 2. Electronic properties such as Ionization Potential(IP), Electron Affinities(EA) and coefficients of the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of com- pounds 1 and 2 were simulated for the first time.展开更多
It is necessary to synthesize new material for the advancements of the technology. In this study, new and novel poly(2-anisidine)@zirconium tungstate(P2A/ZrW_2O_8) was synthesized by simple so-gel method. Physicochemi...It is necessary to synthesize new material for the advancements of the technology. In this study, new and novel poly(2-anisidine)@zirconium tungstate(P2A/ZrW_2O_8) was synthesized by simple so-gel method. Physicochemical characterization of P2A/ZrW_2O_8 was done by thermogravimetric analysis(TGA), scanning electron microscopy(SEM), X-ray powder diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), ion exchange and simultaneous four probe dc conductivity studies. The conductivity study revealed its highly semiconducting nature, in the range of 10^(-1)–10^(-2) S·cm^(-1). Ion-exchange capabilities of the composite make it applicable for cation-exchange studies. The result of distribution studies(Kd) revealed its selectivity towards Cd^(2+) compared to other metal ions. This property of the composite was utilized for designing Cd^(2+) selective membrane electrode. Several important physical parameters of the ion-selective electrode were determined, such as Nernstian slope(32.32 mV·decade^(-1)), working pH range was 2.0–4.0 and response time was found ~ 17 s.The analytical utility of this wave like composite membrane electrode was as, indicator electrode in various potentiometric titrations.展开更多
Fulgide 1-E doped in polystyrene polymer films was heated at various annealing temperatures.Upon irradiation with UV light(366 nm),fulgide 1-E undergoes a conrotatory ring closure to the pink colored closed form 1-C.T...Fulgide 1-E doped in polystyrene polymer films was heated at various annealing temperatures.Upon irradiation with UV light(366 nm),fulgide 1-E undergoes a conrotatory ring closure to the pink colored closed form 1-C.The later color was switched back to the original color when the films were irradiated with white light.The kinetics of photocoloration and photobleaching processes were followed spectrophotometrically by monitoring the absorbance of the ring closed product 1-C at itsλ_(max) of 525 nm.The first-...展开更多
This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride (AlPcCl) thin films. To fabricate the sensors, 50-nm-thick electrodes with 50-μ gaps betw...This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride (AlPcCl) thin films. To fabricate the sensors, 50-nm-thick electrodes with 50-μ gaps between them are deposited on glass substrates. AlPcCl thin films with thickness of 50–100 nm are deposited in the gap between electrodes by thermal evaporation. The resistance of the sensors decreases with increasing thickness and the annealing at 100 ℃ results in an increase in the initial resistance of sensors up to 24%. The sensing mechanism is based on the change in resistance with temperature. For temperature varying from 25 ℃ to 80 ℃, the change in resistance is up to 60%. Simulation is carried out and results obtained coincide with experimental data with an error of ±1%.展开更多
Pyridinone derivatives are of great interest in medicinal chemistry where they were found to be potent to various diseases. Their metal complexes added more value to their applications. Here, we have synthesized two 2...Pyridinone derivatives are of great interest in medicinal chemistry where they were found to be potent to various diseases. Their metal complexes added more value to their applications. Here, we have synthesized two 2-pyridinone derivatives(3-cyano-4-(4-hydroxy-3-methoxyphenyl)-6-phenyl-2(1 H)-pyridinone and 3-cyano-4-chlorophenyl-6-(4-tolyl)-2(1 H)-pyridinone) using one-pot multicomponent system. They were well characterized using spectroscopic techniques like nuclear magnetic resonance(NMR-1 H & 13 C), Fourier transform infrared(FT-IR) and UV/Vis spectroscopy. The final structures were determined using single-crystal X-ray diffraction technique which helps us to determine their geometries. Density functional theory(DFT) and time-dependent density functional theory(TD-DFT) with suitable basis-sets of calculations have correctly simulated these spectroscopic parameters. The intramolecular charge transfer(ICT) of both substrates has been discussed using natural bond orbital(NBO) technique. Molecular electrostatic potential(MEP) surfaces showed their reactive locations for intermolecular charge transfer. Compared to p-nitroaniline(pNA), both substrates were shown to have substantial molecular hyperpolarizability.展开更多
The interaction of cationic gemini surfactants(alkanediyl-α,ω-bis(alkyl dimethylammonium bromide)) with an antipsychotic drug(chlorpromazine hydrochloride(CPZ)) has been investigated. Various micellar and interfacia...The interaction of cationic gemini surfactants(alkanediyl-α,ω-bis(alkyl dimethylammonium bromide)) with an antipsychotic drug(chlorpromazine hydrochloride(CPZ)) has been investigated. Various micellar and interfacial parameters have been deliberated by surface tension measurement to report the nature of interactions between drug and novel surfactant mixtures. The behavior of mixed systems, their compositions and activities of components have been analyzed in the light of Rubingh's theory. The results indicate synergism in the binary mixtures.The binding study between CPZ and surfactants has been done by spectroscopic techniques such as UV–visible and fluorescence. The results are discussed in the light of the use of gemini surfactants as promising drug delivery agents for phenothiazine drugs, and hence, improve their bioavailability.展开更多
Currently,industrial-scale NH3 production almost relies on energy-intensive Haber-Bosch process from atmospheric N2 with large amount of CO2 emission,while low-cost and high-efficient catalysts are demanded for the N2...Currently,industrial-scale NH3 production almost relies on energy-intensive Haber-Bosch process from atmospheric N2 with large amount of CO2 emission,while low-cost and high-efficient catalysts are demanded for the N2 reduction reaction (NRR).In this study,Mn3O4 nanoparticles@reduced graphene oxide (Mn3O4@rGO) composite is reported as an efficient NRR electrocatalyst with excellent selectivity for NH3 formation.In 0.1 M Na2SO4 solution,such catalyst obtains a NH3 yield of 17.4 μg·h^-1·mg^-1cat.and a Faradaic efficiency of 3.52% at-0.85 V vs.reversible hydrogen electrode.Notably,it also shows high electrochemical stability during electrolysis process.Density functional theory (DFT) calculations also demonstrate that the (112) planes of Mn3O4 possess superior NRR activity.展开更多
Electrochemical nitrogen reduction reaction(NRR)is considered as an alternative to the industrial Haber-Bosch process for NH3 production due to both low energy consumption and environment friendliness.However,the majo...Electrochemical nitrogen reduction reaction(NRR)is considered as an alternative to the industrial Haber-Bosch process for NH3 production due to both low energy consumption and environment friendliness.However,the major problem of electrochemical NRR is the unsatisfied efficiency and selectivity of electrocatalyst.As one group of the cheapest and most abundant transition metals,iron-group(Fe,Co,Ni and Cu)electrocatalysts show promising potential on cost and performance advantages as ideal substitute for traditional noble-metal catalysts.In this minireview,we summarize recent advances of iron-group-based materials(including their oxides,hydroxides,nitrides,sulfides and phosphides,etc.)as non-noble metal electrocatalysts towards ambient N2-to-NH3 conversion in aqueous media.Strategies to boost NRR performances and perspectives for future developments are discussed to provide guidance for the field of NRR studies.展开更多
As a carbon-neutral alternative to the Haber-Bosch process,electrochemical N2 reduction enables environment-friendly NH3 synthesis at ambient conditions but needs active electrocatalysts for the N2 reduction reaction....As a carbon-neutral alternative to the Haber-Bosch process,electrochemical N2 reduction enables environment-friendly NH3 synthesis at ambient conditions but needs active electrocatalysts for the N2 reduction reaction.Here,we report that conductive metal-organic framework CO3(hexahydroxytriphenylene)2(Co3 HHTP2)nanoparticles act as an efficient catalyst for ambient electrochemical N2-to-NH3 fixation.When tested in 0.5 M LiClO4,such Co3 HHTP2 achieves a large NH3 yield of 22.14μg·h^-1·mg^-1 cat.with a faradaic efficiency of 3.34%at-0.40 V versus the reversible hydrogen electrode.This catalyst also shows high electrochemical stability and excellent selectivity toward NH3 synthesis.展开更多
Electrocatalytic N_(2) reduction provides an attractive alternative to Haber-Bosch process for artificial NH_(3) synthesis.The difficulty of suppressing competing proton reduction,however,largely impedes its practical...Electrocatalytic N_(2) reduction provides an attractive alternative to Haber-Bosch process for artificial NH_(3) synthesis.The difficulty of suppressing competing proton reduction,however,largely impedes its practical use.Herein,we design a hydrophobic octadecanethiol-modified Fe_(3)P nanoarrays supported on carbon paper(C18@Fe_(3)P/CP)to effectively repel water,concentrate N_(2),and enhance N_(2)-to-NH_(3) conversion.Such catalyst achieves an NH_(3) yield of 1.80×10^(-10) mol s^(-1)·cm^(-2) and a high Faradaic efficiency of 11.22%in 0.1 M Na_(2)SO_(4),outperforming the non-modified Fe_(3)P/CP(2.16×10^(-11) mol s^(-1)·cm^(-2),0.9%)counterpart.Significantly,C18@Fe_(3)P/CP renders steady Nrfixing activlty/selectivity in cycling test and exhibits durability for at least 25 h.First-principles calculations suggest that the surface electronic structure and chemical activity of Fe_(3)P can be well tuned by the thiol modification,which facilitates N_(2) electroreduction activity and catalytic formation of NH_(3).展开更多
This work described the preparation of dysprosium oxide, Dy203, nanoparticles using the homogeneous precipitation method. Dy3+ ions were precipitated using NaOH solution. The obtained product was filtered, dried, and...This work described the preparation of dysprosium oxide, Dy203, nanoparticles using the homogeneous precipitation method. Dy3+ ions were precipitated using NaOH solution. The obtained product was filtered, dried, and then calcined for 1 h at the temperature range of 300-700 ℃ in static air. The calcination temperature of the Dy-precttrsor was chosen based on its decomposi- tion as indicated by the TGA analysis. The crystalline structure and surface morphology of the calcined solids were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray pho- toelectron spectroscopy (XPS). The obtained results revealed that Dy203 with crystallites size of 11-21 nm was formed at 500 ℃. Such value increased to 25-37 nm for the sample calcined at 700 ℃.展开更多
The advancement of cost-effective and selective electrocatalyst towards CO_(2) to CO conversion is crucial for renewable energy conversion and storage,thus to achieve carbon-neutral cycle in a sustainable manner.In th...The advancement of cost-effective and selective electrocatalyst towards CO_(2) to CO conversion is crucial for renewable energy conversion and storage,thus to achieve carbon-neutral cycle in a sustainable manner.In this communication,we report that CujSb decorated Cu nanowire arrays on Cu foil act as a highly active and selective electrocatalyst for CO_(2) to CO conversion.In CO_(2)-saturated 0.1 M KHCO_(3),it achieves a high Faraday efficiency(FE)of 86.5%for CO,at-0.90 V vs.reversible hydrogen electrode(RHE).The H_(2)/CO ratio is tunable from 0.08:1 to 5.9:1 by adjusting the potential.It is worth noting that HCOO-product was totally suppressed on such catalyst,compared with Sb counterpart.The improving selectivity for CO could be attributed to the bimetallic effect and nanowire arrays structure.展开更多
文摘The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment-friendly and energy-efficient avenues to synthesize NH_(3)at mild conditions but demands efficient electrocatalysts for the N_(2)reduction reaction(NRR).Herein we report for the first time that commercial indium-tin oxide glass(ITO/G)can be used as a catalyst electrode toward artificial N_(2)fixation,as it demonstrates excellent selectivity at mild conditions.Such ITO/G delivers excellent NRR performance with a NH_(3)yield of 1.06×10^(-10) mol s^(-1) cm^(-2) and a faradaic efficiency of 6.17%at-0.40 V versus the reversible hydrogen electrode(RHE)in 0.5 M LiClO4.Furthermore,the ITO/G also possesses good electrochemical stability and durability.Finally,the possible reaction mechanism for the NRR on the ITO catalysts was explored using first-principles calculations.
文摘Electrochemical N_(2) reduction provides a green and sustainable alternative to the Haber-Bosch technology for NH_(3 )synthesis.However,the extreme inertness of N_(2) molecules is a formidable challenge,which requires the development of an active electrocatalyst to drive the N_(2) reduction reaction(NRR)for NH_(3) production at ambient conditions.Herein,we demonstrate the development of La-doped TiO_(2) nanorods as an efficient NRR electrocatalyst for ambient NH3 synthesis.The optimized La-TiO_(2) catalyst offers a large NH_(3) yield of 23.06 pg h1 mgcat 1 and a high Faradaic efficiency of 14.54%at-0.70 V versus reversible hydrogen electrode in 0.1 M L1CIO_(4),outperforming most La-and Ti-based catalysts reported before.Significantly,it also demonstrates high electrochemical stability and its activity decay is negligible after 48 h test.The mechanism is further revealed by density functional theory calculations.
基金funded by Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant No.(DF-779-130-1441)DSR technical and financial support.
文摘The exploration of polymer electrolyte in the field of dye sensitized solar cell(DSSC) can contribute to increase the invention of renewable energy applications. In the present work, the influence of imidazole on the poly(vinylidene fluoride)(PVDF)–poly(methyl methacrylate)(PMMA)–Ethylene carbonate(EC)–KI–I2 polymer blend electrolytes has been evaluated. The different weight percentages of imidazole added into polymer blend electrolytes have been prepared by solution casting. The prepared films were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), thermogravimetric analysis(TGA), UV–visible spectra, photoluminescence spectra and impedance spectroscopy. The surface roughness texture of the film was analyzed by atomic force microscopy(AFM). The ionic conductivity of the optimized polymer blend electrolyte was determined by impedance measurement, which is 1.95 × 10-3 S·cm-1 at room temperature. The polymer electrolyte containing 40 wt% of imidazole content exhibits the highest photo-conversion efficiency of 3.04%under the illumination of 100 m W·cm-2. Moreover, a considerable enhancement in the stability of the DSSC device was demonstrated.
基金funded by the Saudi Basic Industries Corporation(SABIC) and the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant no.(MS/15/396/1434)
文摘1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide(1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2Hbenzo[e][1,2]thiazine-3-carboxylate 1,1-dioxide(2) were synthesized, and characterized by spectroscopic techniques; 1H-NMR and infrared(IR) spectroscopy. Crystals of 1 and 2 were grown by slow evaporation of methanol and ethyl acetate, respectively and their crystal structures were investigated by single-crystal X-ray diffraction analysis. Geometric properties were calculated by the B3 LYP method of density functional theory(DFT) at the 6-31G+(d) basis set to compare with the experimental data. Simulated properties were found in strong agreement with the experimental ones. Intermolecular forces have also been modeled in order to investigate the strength of packing and strong hydrogen bonding was observed in both compounds 1 and 2. Electronic properties such as Ionization Potential(IP), Electron Affinities(EA) and coefficients of the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of com- pounds 1 and 2 were simulated for the first time.
文摘It is necessary to synthesize new material for the advancements of the technology. In this study, new and novel poly(2-anisidine)@zirconium tungstate(P2A/ZrW_2O_8) was synthesized by simple so-gel method. Physicochemical characterization of P2A/ZrW_2O_8 was done by thermogravimetric analysis(TGA), scanning electron microscopy(SEM), X-ray powder diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), ion exchange and simultaneous four probe dc conductivity studies. The conductivity study revealed its highly semiconducting nature, in the range of 10^(-1)–10^(-2) S·cm^(-1). Ion-exchange capabilities of the composite make it applicable for cation-exchange studies. The result of distribution studies(Kd) revealed its selectivity towards Cd^(2+) compared to other metal ions. This property of the composite was utilized for designing Cd^(2+) selective membrane electrode. Several important physical parameters of the ion-selective electrode were determined, such as Nernstian slope(32.32 mV·decade^(-1)), working pH range was 2.0–4.0 and response time was found ~ 17 s.The analytical utility of this wave like composite membrane electrode was as, indicator electrode in various potentiometric titrations.
文摘Fulgide 1-E doped in polystyrene polymer films was heated at various annealing temperatures.Upon irradiation with UV light(366 nm),fulgide 1-E undergoes a conrotatory ring closure to the pink colored closed form 1-C.The later color was switched back to the original color when the films were irradiated with white light.The kinetics of photocoloration and photobleaching processes were followed spectrophotometrically by monitoring the absorbance of the ring closed product 1-C at itsλ_(max) of 525 nm.The first-...
基金Project supported by the Center of Excellence for Advanced Materials Research(CEAMR)King Abdulaziz University,Jeddah(Grant No.CEAMR-434-03)
文摘This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride (AlPcCl) thin films. To fabricate the sensors, 50-nm-thick electrodes with 50-μ gaps between them are deposited on glass substrates. AlPcCl thin films with thickness of 50–100 nm are deposited in the gap between electrodes by thermal evaporation. The resistance of the sensors decreases with increasing thickness and the annealing at 100 ℃ results in an increase in the initial resistance of sensors up to 24%. The sensing mechanism is based on the change in resistance with temperature. For temperature varying from 25 ℃ to 80 ℃, the change in resistance is up to 60%. Simulation is carried out and results obtained coincide with experimental data with an error of ±1%.
文摘Pyridinone derivatives are of great interest in medicinal chemistry where they were found to be potent to various diseases. Their metal complexes added more value to their applications. Here, we have synthesized two 2-pyridinone derivatives(3-cyano-4-(4-hydroxy-3-methoxyphenyl)-6-phenyl-2(1 H)-pyridinone and 3-cyano-4-chlorophenyl-6-(4-tolyl)-2(1 H)-pyridinone) using one-pot multicomponent system. They were well characterized using spectroscopic techniques like nuclear magnetic resonance(NMR-1 H & 13 C), Fourier transform infrared(FT-IR) and UV/Vis spectroscopy. The final structures were determined using single-crystal X-ray diffraction technique which helps us to determine their geometries. Density functional theory(DFT) and time-dependent density functional theory(TD-DFT) with suitable basis-sets of calculations have correctly simulated these spectroscopic parameters. The intramolecular charge transfer(ICT) of both substrates has been discussed using natural bond orbital(NBO) technique. Molecular electrostatic potential(MEP) surfaces showed their reactive locations for intermolecular charge transfer. Compared to p-nitroaniline(pNA), both substrates were shown to have substantial molecular hyperpolarizability.
基金Chemistry Department and Centre of Excellence for Advanced Materials Research, King Abdulaziz University
文摘The interaction of cationic gemini surfactants(alkanediyl-α,ω-bis(alkyl dimethylammonium bromide)) with an antipsychotic drug(chlorpromazine hydrochloride(CPZ)) has been investigated. Various micellar and interfacial parameters have been deliberated by surface tension measurement to report the nature of interactions between drug and novel surfactant mixtures. The behavior of mixed systems, their compositions and activities of components have been analyzed in the light of Rubingh's theory. The results indicate synergism in the binary mixtures.The binding study between CPZ and surfactants has been done by spectroscopic techniques such as UV–visible and fluorescence. The results are discussed in the light of the use of gemini surfactants as promising drug delivery agents for phenothiazine drugs, and hence, improve their bioavailability.
基金Project supported by the Department of Education of Guangdong Province(Nos.2017KTSCX185,2017KSYS010,2016KCXTD005)the Youth Team Fund of Wuyi University(No.2016td01)the National Natural Science Foundation of China(Nos.21472077,21772071)~~
基金the National Natural Science Foundation of China (No.21575137).
文摘Currently,industrial-scale NH3 production almost relies on energy-intensive Haber-Bosch process from atmospheric N2 with large amount of CO2 emission,while low-cost and high-efficient catalysts are demanded for the N2 reduction reaction (NRR).In this study,Mn3O4 nanoparticles@reduced graphene oxide (Mn3O4@rGO) composite is reported as an efficient NRR electrocatalyst with excellent selectivity for NH3 formation.In 0.1 M Na2SO4 solution,such catalyst obtains a NH3 yield of 17.4 μg·h^-1·mg^-1cat.and a Faradaic efficiency of 3.52% at-0.85 V vs.reversible hydrogen electrode.Notably,it also shows high electrochemical stability during electrolysis process.Density functional theory (DFT) calculations also demonstrate that the (112) planes of Mn3O4 possess superior NRR activity.
文摘Electrochemical nitrogen reduction reaction(NRR)is considered as an alternative to the industrial Haber-Bosch process for NH3 production due to both low energy consumption and environment friendliness.However,the major problem of electrochemical NRR is the unsatisfied efficiency and selectivity of electrocatalyst.As one group of the cheapest and most abundant transition metals,iron-group(Fe,Co,Ni and Cu)electrocatalysts show promising potential on cost and performance advantages as ideal substitute for traditional noble-metal catalysts.In this minireview,we summarize recent advances of iron-group-based materials(including their oxides,hydroxides,nitrides,sulfides and phosphides,etc.)as non-noble metal electrocatalysts towards ambient N2-to-NH3 conversion in aqueous media.Strategies to boost NRR performances and perspectives for future developments are discussed to provide guidance for the field of NRR studies.
文摘As a carbon-neutral alternative to the Haber-Bosch process,electrochemical N2 reduction enables environment-friendly NH3 synthesis at ambient conditions but needs active electrocatalysts for the N2 reduction reaction.Here,we report that conductive metal-organic framework CO3(hexahydroxytriphenylene)2(Co3 HHTP2)nanoparticles act as an efficient catalyst for ambient electrochemical N2-to-NH3 fixation.When tested in 0.5 M LiClO4,such Co3 HHTP2 achieves a large NH3 yield of 22.14μg·h^-1·mg^-1 cat.with a faradaic efficiency of 3.34%at-0.40 V versus the reversible hydrogen electrode.This catalyst also shows high electrochemical stability and excellent selectivity toward NH3 synthesis.
基金supported by the National Natural Science Foundation of China(No.22072015)Shanghai Scientific and Technological Innovation Project(No.18JC 1410604)Program for Science&Technology Innovation Talents in Universities of Henan Province(No.20HASTIT028).
文摘Electrocatalytic N_(2) reduction provides an attractive alternative to Haber-Bosch process for artificial NH_(3) synthesis.The difficulty of suppressing competing proton reduction,however,largely impedes its practical use.Herein,we design a hydrophobic octadecanethiol-modified Fe_(3)P nanoarrays supported on carbon paper(C18@Fe_(3)P/CP)to effectively repel water,concentrate N_(2),and enhance N_(2)-to-NH_(3) conversion.Such catalyst achieves an NH_(3) yield of 1.80×10^(-10) mol s^(-1)·cm^(-2) and a high Faradaic efficiency of 11.22%in 0.1 M Na_(2)SO_(4),outperforming the non-modified Fe_(3)P/CP(2.16×10^(-11) mol s^(-1)·cm^(-2),0.9%)counterpart.Significantly,C18@Fe_(3)P/CP renders steady Nrfixing activlty/selectivity in cycling test and exhibits durability for at least 25 h.First-principles calculations suggest that the surface electronic structure and chemical activity of Fe_(3)P can be well tuned by the thiol modification,which facilitates N_(2) electroreduction activity and catalytic formation of NH_(3).
文摘This work described the preparation of dysprosium oxide, Dy203, nanoparticles using the homogeneous precipitation method. Dy3+ ions were precipitated using NaOH solution. The obtained product was filtered, dried, and then calcined for 1 h at the temperature range of 300-700 ℃ in static air. The calcination temperature of the Dy-precttrsor was chosen based on its decomposi- tion as indicated by the TGA analysis. The crystalline structure and surface morphology of the calcined solids were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray pho- toelectron spectroscopy (XPS). The obtained results revealed that Dy203 with crystallites size of 11-21 nm was formed at 500 ℃. Such value increased to 25-37 nm for the sample calcined at 700 ℃.
基金supported by the National Natural Science Foundation of China(No.22072015)the Foundation of Sichuan Department of Science and Technology(No.2017FZ0079).
文摘The advancement of cost-effective and selective electrocatalyst towards CO_(2) to CO conversion is crucial for renewable energy conversion and storage,thus to achieve carbon-neutral cycle in a sustainable manner.In this communication,we report that CujSb decorated Cu nanowire arrays on Cu foil act as a highly active and selective electrocatalyst for CO_(2) to CO conversion.In CO_(2)-saturated 0.1 M KHCO_(3),it achieves a high Faraday efficiency(FE)of 86.5%for CO,at-0.90 V vs.reversible hydrogen electrode(RHE).The H_(2)/CO ratio is tunable from 0.08:1 to 5.9:1 by adjusting the potential.It is worth noting that HCOO-product was totally suppressed on such catalyst,compared with Sb counterpart.The improving selectivity for CO could be attributed to the bimetallic effect and nanowire arrays structure.