In this paper,the authors study the fully distributed event-triggering consensus problem for multi-agent systems with linear time-varying dynamics,where each agent is described by a linear time-varying system.An adapt...In this paper,the authors study the fully distributed event-triggering consensus problem for multi-agent systems with linear time-varying dynamics,where each agent is described by a linear time-varying system.An adaptive event-triggering protocol is proposed for time-varying multi-agent systems under directed graph.Based on the Gramian matrix of linear time-varying systems,the design of control gain is done and sufficient conditions ensuring the consensus of linear time-varying multiagent systems are obtained.It is shown that the coupling strength is closely related to the triggering condition.When it comes to undirected graph,it is shown that the coupling strength is independent on the triggering condition and thus the design procedure is of more freedom than the directed case.In addition,it is also proved that Zeno behaviours can be excluded in the proposed protocols.A numerical example is presented to demonstrate the effectiveness of the theoretical results.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.61873230 and 61673176。
文摘In this paper,the authors study the fully distributed event-triggering consensus problem for multi-agent systems with linear time-varying dynamics,where each agent is described by a linear time-varying system.An adaptive event-triggering protocol is proposed for time-varying multi-agent systems under directed graph.Based on the Gramian matrix of linear time-varying systems,the design of control gain is done and sufficient conditions ensuring the consensus of linear time-varying multiagent systems are obtained.It is shown that the coupling strength is closely related to the triggering condition.When it comes to undirected graph,it is shown that the coupling strength is independent on the triggering condition and thus the design procedure is of more freedom than the directed case.In addition,it is also proved that Zeno behaviours can be excluded in the proposed protocols.A numerical example is presented to demonstrate the effectiveness of the theoretical results.