期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ON THE DIFFUSION PHENOMENON OF QUASILINEAR HYPERBOLIC WAVES 被引量:2
1
作者 YANG HAN albert milani 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2000年第1期63-70,共8页
The authors consider the asymptotic behavior of solutions of the quasilinear hyperbolic equation with linear damping u_(tt)+u_(t)-div(a(u)u)=0,and show that,at least when n≥3,they tend,as t-+∞,to those of the nonlin... The authors consider the asymptotic behavior of solutions of the quasilinear hyperbolic equation with linear damping u_(tt)+u_(t)-div(a(u)u)=0,and show that,at least when n≥3,they tend,as t-+∞,to those of the nonlinear parabolic equation v_t-div(a(v)v)=0,in the sense that the norm||u(.,t)-v(.,t)||_(L∞(R^n))of the difference u-v decays faster than that of either u or v.This provides another example of the diffusion phenomenon of nonlinear hyperbolic waves,first observed by Hsiao,L.and Liu Taiping(see[1,2]). 展开更多
关键词 Asymptotic behavior of solutions Quasilinear hyperbolic and parabolic equations Diffusion phenomenon
原文传递
Almost Global Strong Solutions to Quasilinear Dissipative Evolution Equations
2
作者 albert milani 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第1期91-110,共20页
The author proves a global existence result for strong solutions to the quasilinear dissipative hyperbolic equation (1.1) below, corresponding to initial values and source terms of arbitrary size, provided that the hy... The author proves a global existence result for strong solutions to the quasilinear dissipative hyperbolic equation (1.1) below, corresponding to initial values and source terms of arbitrary size, provided that the hyperbolicity parameter ε is sufficiently small. This implies a corresponding global existence result for the reduced quasilinear parabolic equation (1.4) below. 展开更多
关键词 Quasilinear evolution equation A priori estimates Global existence Small parameter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部