The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propag...The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phononic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.展开更多
In this paper a flat structurally tunable acoustic metasurface is constructed based on the helical unit cell. The length of the acoustic channel can be tuned by the screw-in depth of the helix. Accordingly, the wave p...In this paper a flat structurally tunable acoustic metasurface is constructed based on the helical unit cell. The length of the acoustic channel can be tuned by the screw-in depth of the helix. Accordingly, the wave phase for the transmitted acoustic wave can be tuned and the wavefront can be manipulated. Then multifunctions such as anomalous refraction, point focusing, beam focusing and self-bending can be realized and switched just by screwing in or out the helixes. At the same time, the broadband operating frequency is also realized. The experiments for anomalous refraction and point focusing are also performed, and the results show that the designed metasurface is effective. The present studies have important applications in dynamic manipulation of acoustic waves by metasurfaces.展开更多
基金supported by the National Natural Science Foundation of China(No.10632020).
文摘The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phononic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.
基金the National Natural Science Foundation of China(Grant Nos.11872101,and 11991031)the Joint Sino-German Research Project(Grant No.GZ 1355)the support of the National Natural Science Foundation of China(Grant No.11902171).
文摘In this paper a flat structurally tunable acoustic metasurface is constructed based on the helical unit cell. The length of the acoustic channel can be tuned by the screw-in depth of the helix. Accordingly, the wave phase for the transmitted acoustic wave can be tuned and the wavefront can be manipulated. Then multifunctions such as anomalous refraction, point focusing, beam focusing and self-bending can be realized and switched just by screwing in or out the helixes. At the same time, the broadband operating frequency is also realized. The experiments for anomalous refraction and point focusing are also performed, and the results show that the designed metasurface is effective. The present studies have important applications in dynamic manipulation of acoustic waves by metasurfaces.