In the present work, an alternative numerical methodology is developed for a fast and effective simulation and analysis of the complex flow and energy conversion in Pelton impulse hydro turbines. The algorithm is base...In the present work, an alternative numerical methodology is developed for a fast and effective simulation and analysis of the complex flow and energy conversion in Pelton impulse hydro turbines. The algorithm is based on the Lagrangian approach and the unsteady free-surface flow during the jet-bucket interaction is simulated by tracking the trajectories of representative fluid particles at very low computer cost. Modern regression tools are implemented in a new parameterization technique of the inner bucket surface. Key-feature of the model is the introduction of additional terms into the particle motion equations to account for various hydraulic losses and the flow spreading, which are regulated and evaluated with the aid of experimental data in a Laboratory Pelton turbine. The model is applied to study the jet-runner interaction in various operation conditions and then to perform numerical design optimization of the bucket shape, using a stochastic optimizer based on evolutionary algorithms. The obtained optimum runner attains remarkably higher hydraulic efficiency in the entire load range. Finally, a new small Pelton turbine (150 kW) is designed, manufactured and tested in the Laboratory, and its performance and efficiency verify the model predictions.展开更多
This paper aims to develop a generic optimisation method for Pelton turbine runners using computational fluid dynamics (CFD). Two different initial runners are optimised to achieve more generic results. A simple buc...This paper aims to develop a generic optimisation method for Pelton turbine runners using computational fluid dynamics (CFD). Two different initial runners are optimised to achieve more generic results. A simple bucket geometry based on existing bibliography is parameterised and initially optimised using fast Lagrangian solver (FLS). It is then further optimised with a more accurate method using ANSYS Fluent. The second geometry is a current commercial geometry with good initial performance and is optimised using ANSYS CFX. The analytical results provided by CFX and Fluent simulations are used to analyse the characteristics of the flow for different runner geometries.展开更多
文摘In the present work, an alternative numerical methodology is developed for a fast and effective simulation and analysis of the complex flow and energy conversion in Pelton impulse hydro turbines. The algorithm is based on the Lagrangian approach and the unsteady free-surface flow during the jet-bucket interaction is simulated by tracking the trajectories of representative fluid particles at very low computer cost. Modern regression tools are implemented in a new parameterization technique of the inner bucket surface. Key-feature of the model is the introduction of additional terms into the particle motion equations to account for various hydraulic losses and the flow spreading, which are regulated and evaluated with the aid of experimental data in a Laboratory Pelton turbine. The model is applied to study the jet-runner interaction in various operation conditions and then to perform numerical design optimization of the bucket shape, using a stochastic optimizer based on evolutionary algorithms. The obtained optimum runner attains remarkably higher hydraulic efficiency in the entire load range. Finally, a new small Pelton turbine (150 kW) is designed, manufactured and tested in the Laboratory, and its performance and efficiency verify the model predictions.
基金Lancaster University Renewable Energy Group and Fluid Machinery Groupthe Laboratory of Hydraulic Turbo Machines at the National Technical University of Athens+1 种基金Gilbert Gilkes and Gordon Ltdthe EU ERASMUS programme for the financial support
文摘This paper aims to develop a generic optimisation method for Pelton turbine runners using computational fluid dynamics (CFD). Two different initial runners are optimised to achieve more generic results. A simple bucket geometry based on existing bibliography is parameterised and initially optimised using fast Lagrangian solver (FLS). It is then further optimised with a more accurate method using ANSYS Fluent. The second geometry is a current commercial geometry with good initial performance and is optimised using ANSYS CFX. The analytical results provided by CFX and Fluent simulations are used to analyse the characteristics of the flow for different runner geometries.