In this work,one kind of typeⅡZnSe/CdS/ZnS core/shell/shell nanocrystals(NCs)is synthesized,and their linear and nonlinear photophysical properties are investigated.Through measurements of the temperaturedependent ph...In this work,one kind of typeⅡZnSe/CdS/ZnS core/shell/shell nanocrystals(NCs)is synthesized,and their linear and nonlinear photophysical properties are investigated.Through measurements of the temperaturedependent photoluminescence spectra of NCs,their excitonic properties,including the coefficient of the bandgap change,coupling strength of the exciton acoustic phonons,exciton longitudinal optical(LO)phonons,and LO–phonon energy are revealed.Femtosecond transient absorption spectroscopy was employed to obtain insight into ultrafast processes occurring at the interface of ZnSe and CdS,such as those involving the injection of photoinduced electrons into the CdS shell,interfacial state bleaching,and charge separation time.At the end,their multiphoton absorption spectra were determined by using the z-scan technique,which yielded a maximum twophoton absorption cross section of 3717 GM at 820 nm and three-photon absorption cross section up to 3.9×10^-77cm^6·s^2·photon^-2at 1220 nm,respectively.The photophysical properties presented here may be important for exploiting their relevant applications in optoelectronic devices and deep-tissue bioimaging.展开更多
基金Natural Science Foundation of Guangdong Province(2018A030310637,2019A1515012094)Department of Education of Guangdong Province(2018KTSCX19)。
文摘In this work,one kind of typeⅡZnSe/CdS/ZnS core/shell/shell nanocrystals(NCs)is synthesized,and their linear and nonlinear photophysical properties are investigated.Through measurements of the temperaturedependent photoluminescence spectra of NCs,their excitonic properties,including the coefficient of the bandgap change,coupling strength of the exciton acoustic phonons,exciton longitudinal optical(LO)phonons,and LO–phonon energy are revealed.Femtosecond transient absorption spectroscopy was employed to obtain insight into ultrafast processes occurring at the interface of ZnSe and CdS,such as those involving the injection of photoinduced electrons into the CdS shell,interfacial state bleaching,and charge separation time.At the end,their multiphoton absorption spectra were determined by using the z-scan technique,which yielded a maximum twophoton absorption cross section of 3717 GM at 820 nm and three-photon absorption cross section up to 3.9×10^-77cm^6·s^2·photon^-2at 1220 nm,respectively.The photophysical properties presented here may be important for exploiting their relevant applications in optoelectronic devices and deep-tissue bioimaging.