期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Giant piezoresponse and promising application of environmental friendly small-ion-doped ZnO
1
作者 PAN Feng LUO JingTing +2 位作者 ang yuchao Wang XuBo ZENG Fei 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第2期421-436,共16页
In recent years, with the growing concerns on environmental protection and human health, new materials, such as lead-free piezoelectric materials, have received increasing attention. So far, three types of lead-free p... In recent years, with the growing concerns on environmental protection and human health, new materials, such as lead-free piezoelectric materials, have received increasing attention. So far, three types of lead-free piezoelectric systems have been widely researched, i.e., perovskites, bismuth layer-structured ferroelectrics, and tungsten-bronze type ferroelectrics. This article presents a new type of environmental friendly piezoelectric material with simple structure, the transition-metal(TM)-doped ZnO. Through substituting Zn2+ site with small size ion, we obtained a series of TM-doped ZnO with giant piezoresponse, such as Zno.975Vo.o250 of 170 pC/N, Zn0.94Cr0.06O of 120 pC/N, Zn0.913Mn0.0870 of 86 pC/N and Zn0.988Fe0.0120 of 127 pC/N. The tremendous piezoresponses are ascribed to the introduction of switchable spontaneous polarization and high permittivity in TM-doped ZnO, The microscopic origin of giant piezoresponse is also discussed. Substitution of TM ion with small ionic size for Zn2+ results in the easier rotation of noncollinear TM-O1 bonds along the c axis under the applied field, which produces large piezoelectric displacement and corresponding piezoresponse enhancement. Furthermore, it proposes a general rule to guide the design of new wurtzite semiconductors with enhanced piezoresponses. That is, TM-dopant with ionic size smaller than Zn2+ substitutes for Zn2+ site will increase the piezoresponse of ZnO significantly. Finally, we discuss the improved per- formances of some TM-doped ZnO based piezoelectric devices. 展开更多
关键词 ZNO lead-free piezoelectric doping modification piezoresponse enhancement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部