Fog computing is an emergent and powerful computing paradigm to serve latency-sensitive applications by executing internet of things(IoT)appli-cations in the proximity of the network.Fog computing offers computational...Fog computing is an emergent and powerful computing paradigm to serve latency-sensitive applications by executing internet of things(IoT)appli-cations in the proximity of the network.Fog computing offers computational and storage services between cloud and terminal devices.However,an efficient resource allocation to execute the IoT applications in a fog environment is still challenging due to limited resource availability and low delay requirement of services.A large number of heterogeneous shareable resources makes fog computing a complex environment.In the sight of these issues,this paper has proposed an efficient levy flight firefly-based resource allocation technique.The levy flight algorithm is a metaheuristic algorithm.It offers high efficiency and success rate because of its longer step length and fast convergence rate.Thus,it treats global optimization problems more efficiently and naturally.A system framework for fog computing is presented,followed by the proposed resource allocation scheme in the fog computing environment.Experimental evaluation and comparison with the firefly algorithm(FA),particle swarm optimization(PSO),genetic algorithm(GA)and hybrid algorithm using GA and PSO(GAPSO)have been conducted to validate the effectiveness and efficiency of the proposed algorithm.Simulation results show that the proposed algorithm performs efficient resource allocation and improves the quality of service(QoS).The proposed algorithm reduces average waiting time,average execution time,average turnaround time,processing cost and energy consumption and increases resource utilization and task success rate compared to FA,GAPSO,PSO and GA.展开更多
Globally,urbanization and a steady increase in population generate a huge amount of wastes,which leads to a series of economic,social,and environmental changes,mainly in developing countries.There is an utmost need fo...Globally,urbanization and a steady increase in population generate a huge amount of wastes,which leads to a series of economic,social,and environmental changes,mainly in developing countries.There is an utmost need for efficient management strategies for the beneficial utilization of these wastes into useful products.Among these strategies,composting is gaining attention due to its benefits of solid waste management,such as proper sterilization,and economical and effective bioconversion of lignocellulosic wastes to valuable products.Composting is an effective and sustainable approach for the management of various lignocellulosic wastes.This process comprises a series of effective waste treatment steps to ensure sustainable agriculture.Different composting methods have been explored for solid waste management.Furthermore,the influence of various factors relevant to composting has been elucidated.Microbes play a significant role in enhancing the degradation of lignocellulosic residues by secreting different hydrolytic enzymes.Compost has been utilized for increasing soil properties and improving plant growth.展开更多
文摘Fog computing is an emergent and powerful computing paradigm to serve latency-sensitive applications by executing internet of things(IoT)appli-cations in the proximity of the network.Fog computing offers computational and storage services between cloud and terminal devices.However,an efficient resource allocation to execute the IoT applications in a fog environment is still challenging due to limited resource availability and low delay requirement of services.A large number of heterogeneous shareable resources makes fog computing a complex environment.In the sight of these issues,this paper has proposed an efficient levy flight firefly-based resource allocation technique.The levy flight algorithm is a metaheuristic algorithm.It offers high efficiency and success rate because of its longer step length and fast convergence rate.Thus,it treats global optimization problems more efficiently and naturally.A system framework for fog computing is presented,followed by the proposed resource allocation scheme in the fog computing environment.Experimental evaluation and comparison with the firefly algorithm(FA),particle swarm optimization(PSO),genetic algorithm(GA)and hybrid algorithm using GA and PSO(GAPSO)have been conducted to validate the effectiveness and efficiency of the proposed algorithm.Simulation results show that the proposed algorithm performs efficient resource allocation and improves the quality of service(QoS).The proposed algorithm reduces average waiting time,average execution time,average turnaround time,processing cost and energy consumption and increases resource utilization and task success rate compared to FA,GAPSO,PSO and GA.
基金the financial assistance as Senior Research Fellowship(No.09/382(0179)/2016-EMR1)from the Council of Scientific and Industrial Research(CSIR),New Delhi,India during the tenure of this research workthe Haryana State Council for Science and Technology,Panchkula,India(Nos.1743 and HSCST/R&D/2017/62)for providing financial support during the tenure of this research work。
文摘Globally,urbanization and a steady increase in population generate a huge amount of wastes,which leads to a series of economic,social,and environmental changes,mainly in developing countries.There is an utmost need for efficient management strategies for the beneficial utilization of these wastes into useful products.Among these strategies,composting is gaining attention due to its benefits of solid waste management,such as proper sterilization,and economical and effective bioconversion of lignocellulosic wastes to valuable products.Composting is an effective and sustainable approach for the management of various lignocellulosic wastes.This process comprises a series of effective waste treatment steps to ensure sustainable agriculture.Different composting methods have been explored for solid waste management.Furthermore,the influence of various factors relevant to composting has been elucidated.Microbes play a significant role in enhancing the degradation of lignocellulosic residues by secreting different hydrolytic enzymes.Compost has been utilized for increasing soil properties and improving plant growth.