期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Influence of high pressure during solidification on the microstructure and strength of Mg-Zn-Y alloys 被引量:7
1
作者 周海涛 刘克明 +3 位作者 张莉 陆磊 atrens andrej 陆德平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第4期435-440,共6页
The effect of high pressure during solidification on the microstructure and mechanical property of Mg-6Zn-1Y and Mg-6Zn-3Y was investigated using optical microscopy, scanning electronic microscopy, X-ray diffraction(... The effect of high pressure during solidification on the microstructure and mechanical property of Mg-6Zn-1Y and Mg-6Zn-3Y was investigated using optical microscopy, scanning electronic microscopy, X-ray diffraction(XRD) and Vickers-hardness testing. Under atmospheric-pressure solidification, Mg-6Zn-1Y consisted of α-Mg, Mg7Zn3 and Mg_3YZn_6; whilst Mg-6Zn-3Y consisted of α-Mg, Mg_3Y_2Zn_3 and Mg_3YZn_6. Under 6 GPa high-pressure solidification, both alloy consisted of α-Mg, MgZ n and Mg12 YZn. The shape of the main second phase changed from a lamellar structure formed for atmospheric-pressure solidification to small particles formed for solidification at 6 GPa pressure. The dendrite microstructure was refined and was more regular, and the length of the primary dendrite arm increased under 6 GPa high-pressure solidification, which was attributed to increasing thermal undercooling, compositional undercooling and kinetics undercooling. After solidification at 6 GPa pressure, the solid solubility of Y in the second phase and the Vickers-hardness increased from 15 wt.% and 69 MPa for Mg-6Zn-1Y to 49 wt.% and 97 MPa; and from 19 wt.% and 71 MPa for Mg-6Zn-3Y alloy to 20 wt.% and 92 MPa, respectively. 展开更多
关键词 Mg-Zn-Y alloy high-pressure solidification microstructure mechanical property rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部