期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Global Well-Posedness and Asymptotic Behavior for the 2D Subcritical Dissipative Quasi-Geostrophic Equation in Critical Fourier-Besov-Morrey Spaces
1
作者 azanzal achraf ALLALOU Chakir +1 位作者 MELLIANI Said ABBASSI Adil 《Journal of Partial Differential Equations》 CSCD 2023年第1期1-21,共21页
In this paper,we study the subcritical dissipative quasi-geostrophic equa-tion.By using the Littlewood Paley theory,Fourier analysis and standard techniques we prove that there exists a unique global-in-time solution ... In this paper,we study the subcritical dissipative quasi-geostrophic equa-tion.By using the Littlewood Paley theory,Fourier analysis and standard techniques we prove that there exists a unique global-in-time solution for small initial data belonging to the critical Fourier-Besov-Morrey spaces FN^(3-2a+(λ-2)/p)_(p,λ,q).Moreover,we show the asymptotic behavior of the global solution v.i.e.||v(t)||FN^(3-2a+(λ-2)/p)_(p,λ,q)decays to zero as time goes to infinity. 展开更多
关键词 2D quasi-geostrophic equation subcritical dissipation Littlewood-Paley theory global well-posedness long time behavior of the solution Fourier-Besov-Morrey spaces
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部