We analyze three one parameter families of approximations and show that they are symplectic in Lagrangian sence and can be related to symplectic schemes in Hamiltonian sense by different symplectic mappings. We also g...We analyze three one parameter families of approximations and show that they are symplectic in Lagrangian sence and can be related to symplectic schemes in Hamiltonian sense by different symplectic mappings. We also give a direct generalization of Veselov variational principle for construction of scheme of higher order differential equations. At last, we present numerical experiments.展开更多
基金Supported by the special founds for Major State Basic Reserch Project, G1999, 023800.
文摘We analyze three one parameter families of approximations and show that they are symplectic in Lagrangian sence and can be related to symplectic schemes in Hamiltonian sense by different symplectic mappings. We also give a direct generalization of Veselov variational principle for construction of scheme of higher order differential equations. At last, we present numerical experiments.