期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于深度学习的颈动脉斑块超声图像识别方法 被引量:9
1
作者 赵媛 孙夏 +1 位作者 aaron fenster 丁明跃 《中国医疗器械信息》 2017年第9期9-11,24,共4页
文章将深度学习应用于颈动脉斑块超声图像识别,分析讨论了不同感兴趣区域(Region of Interest,ROI)选取方式对卷积神经网络识别斑块性能的影响,并通过迁移学习来训练卷积神经网络。实验结果表明,采用分割出血管内外膜的ROI作为训练集时... 文章将深度学习应用于颈动脉斑块超声图像识别,分析讨论了不同感兴趣区域(Region of Interest,ROI)选取方式对卷积神经网络识别斑块性能的影响,并通过迁移学习来训练卷积神经网络。实验结果表明,采用分割出血管内外膜的ROI作为训练集时,网络的识别能力最好,受试者操作特性(Receiver Operating Characteristic,ROC)曲线下面积为0.972。另外,用分割出血管内外膜的ROI对网络进行预训练,之后再用原始ROI进行微调,也可以有效提高卷积神经网络对原始ROI的识别能力,ROC曲线下面积从0.802提高至0.856。 展开更多
关键词 颈动脉斑块 卷积神经网络 迁移学习 计算机辅助诊断
下载PDF
Efficient Convex Optimization Approaches to Variational Image Fusion
2
作者 Jing Yuan Brandon Miles +2 位作者 Greg Garvin Xue-Cheng Tai aaron fenster 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2014年第2期234-250,共17页
Image fusion is an imaging technique to visualize information from multiple imaging sources in one single image,which is widely used in remote sensing,medical imaging etc.In this work,we study two variational approach... Image fusion is an imaging technique to visualize information from multiple imaging sources in one single image,which is widely used in remote sensing,medical imaging etc.In this work,we study two variational approaches to image fusion which are closely related to the standard TV-L_(2) and TV-L_(1) image approximation methods.We investigate their convex optimization formulations,under the perspective of primal and dual,and propose their associated new image decomposition models.In addition,we consider the TV-L_(1) based image fusion approach and study the specified problem of fusing two discrete-constrained images f_(1)(x)∈L_(1) and f_(2)(x)∈L_(2),where L_(1) and L_(2) are the sets of linearly-ordered discrete values.We prove that the TV-L_(1) based image fusion actually gives rise to the exact convex relaxation to the corresponding nonconvex image fusion constrained by the discretevalued set u(x)∈L_(1)∪L_(2).This extends the results for the global optimization of the discrete-constrained TV-L_(1) image approximation[8,36]to the case of image fusion.As a big numerical advantage of the two proposed dual models,we show both of them directly lead to new fast and reliable algorithms,based on modern convex optimization techniques.Experiments with medical images,remote sensing images and multi-focus images visibly show the qualitative differences between the two studied variational models of image fusion.We also apply the new variational approaches to fusing 3D medical images. 展开更多
关键词 Convex optimization primal-dual programming combinatorial optimization totalvariation regularization image fusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部