1 Summary With the advancement of science and technology,complex engineering structures are widely used in extreme environments[1].In equipment service,many uncertainty factors significantly affect safety and reliabil...1 Summary With the advancement of science and technology,complex engineering structures are widely used in extreme environments[1].In equipment service,many uncertainty factors significantly affect safety and reliability[2–5].Therefore,ensuring high reliability of structures has become an important research direction in engineering design.At the same time,the importance of equipment health management of complex engineering structures is becoming increasingly prominent[6–8].Computer-aided uncertainty modeling and reliability assessment have become key tools,and finite element simulation and algorithmic innovation play a key role in the reliability analysis of complex equipment[9,10].These techniques can accurately simulate stress and damage accumulation under various operating environments,providing engineers with important decision support and optimization solutions.展开更多
基金fundings from Project ATE:Agenda para a Transição Energética(02/C05-i01.02/2022.PC644914747-00000023)cofinanced by Plano de Recuperação e Resiliência(PRR),República Portuguesa,through NextGeneration EU+3 种基金the project entitled Giga-Cycle Fatigue Behaviour of Engineering Metallic Alloys(PTDC/EME-EME/7678/2020)National Natural Science Foundation of China(Grant No.12372195)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515240010)China Scholarship Council(No.202406070043).
文摘1 Summary With the advancement of science and technology,complex engineering structures are widely used in extreme environments[1].In equipment service,many uncertainty factors significantly affect safety and reliability[2–5].Therefore,ensuring high reliability of structures has become an important research direction in engineering design.At the same time,the importance of equipment health management of complex engineering structures is becoming increasingly prominent[6–8].Computer-aided uncertainty modeling and reliability assessment have become key tools,and finite element simulation and algorithmic innovation play a key role in the reliability analysis of complex equipment[9,10].These techniques can accurately simulate stress and damage accumulation under various operating environments,providing engineers with important decision support and optimization solutions.