Pigeon peas, a type of pulse, have immense nutritional potential to improve health in arid and semi-arid regions. However, unlocking this potential relies heavily on understanding their technological properties, such ...Pigeon peas, a type of pulse, have immense nutritional potential to improve health in arid and semi-arid regions. However, unlocking this potential relies heavily on understanding their technological properties, such as hydration rate, volumetric expansion, and cooking time. These properties directly influence processing, accessibility, and acceptability as a food source. However, there is limited information on technological properties of improved varieties. The study aimed to determine technological properties of improved pigeon pea varieties grown in Machakos County. Seven improved pigeon peas varieties namely: KARI Mbaazi 1, KARI Mbaazi 2, ICEAP 00850, KAT 60/8, Mituki, Egerton Mbaazi 1, Egerton Mbaazi 2 and ICEAP 00554 (control variety) were used in this study. These varieties were tested for water absorption capacity (WAC), volumetric expansion, density, cooking time (CT) and total soluble solids (TSS) in the broth. The experiment was arranged in a Completely Randomized Design (CRD) replicated three times. Data analysis was conducted using SAS software version 9.1.3 (SAS, 2006). Means separation was done using Tukey’s honestly significant difference (HSD) at 95% Confidence Level. There were significant differences in water absorption capacity (WAC), volumetric expansion, density, TSS, and CT among the improved varieties (p p < 0.05). KARI Mbaazi 2 exhibited the greatest volumetric expansion after cooking (VEAC) at 11%. Additionally, control variety recorded the highest water absorption capacity (125.48%), which was significantly greater compared to the improved pigeon pea varieties. Cooking time in minutes was shortest for Mituki (46.0) and KAT 60/8 (55.7) and longest for both KARI Mbaazi 1 and ICEAP00850 at 160 minutes. All the varieties showed high TSS ranging from 10.5 to 26.7% indicating the potential to select varieties with desired flavour profiles. Improved pigeon pea varieties (Mituki and KAT60/8) displayed desired technological properties alongside the control variety. These findings inform the specific culinary applications and nutritional needs which enhance utilisation of pigeon peas as food. Further research is needed to determine the impact of the technological properties on the digestibility and glycaemic index of pigeon peas.展开更多
文摘Pigeon peas, a type of pulse, have immense nutritional potential to improve health in arid and semi-arid regions. However, unlocking this potential relies heavily on understanding their technological properties, such as hydration rate, volumetric expansion, and cooking time. These properties directly influence processing, accessibility, and acceptability as a food source. However, there is limited information on technological properties of improved varieties. The study aimed to determine technological properties of improved pigeon pea varieties grown in Machakos County. Seven improved pigeon peas varieties namely: KARI Mbaazi 1, KARI Mbaazi 2, ICEAP 00850, KAT 60/8, Mituki, Egerton Mbaazi 1, Egerton Mbaazi 2 and ICEAP 00554 (control variety) were used in this study. These varieties were tested for water absorption capacity (WAC), volumetric expansion, density, cooking time (CT) and total soluble solids (TSS) in the broth. The experiment was arranged in a Completely Randomized Design (CRD) replicated three times. Data analysis was conducted using SAS software version 9.1.3 (SAS, 2006). Means separation was done using Tukey’s honestly significant difference (HSD) at 95% Confidence Level. There were significant differences in water absorption capacity (WAC), volumetric expansion, density, TSS, and CT among the improved varieties (p p < 0.05). KARI Mbaazi 2 exhibited the greatest volumetric expansion after cooking (VEAC) at 11%. Additionally, control variety recorded the highest water absorption capacity (125.48%), which was significantly greater compared to the improved pigeon pea varieties. Cooking time in minutes was shortest for Mituki (46.0) and KAT 60/8 (55.7) and longest for both KARI Mbaazi 1 and ICEAP00850 at 160 minutes. All the varieties showed high TSS ranging from 10.5 to 26.7% indicating the potential to select varieties with desired flavour profiles. Improved pigeon pea varieties (Mituki and KAT60/8) displayed desired technological properties alongside the control variety. These findings inform the specific culinary applications and nutritional needs which enhance utilisation of pigeon peas as food. Further research is needed to determine the impact of the technological properties on the digestibility and glycaemic index of pigeon peas.