Fault currents emanating from inverter-based resources(IBRs)are controlled to follow specific references to support the power grid during faults.However,these fault currents differ from the typical fault currents fed ...Fault currents emanating from inverter-based resources(IBRs)are controlled to follow specific references to support the power grid during faults.However,these fault currents differ from the typical fault currents fed by synchronous generators,resulting in an improper operation of conventional phase selection methods(PSMs).In this paper,the relative angles between sequence voltages measured at the relay location are determined analytically in two stages:(1)a short-circuit analysis is performed at the fault location to determine the relative angles between sequence voltages;and(2)an analysis of the impact of transmission line on the phase difference between the sequence voltages of relay and fault is conducted for different IBR controllers.Consequently,new PSM zones based on relative angles between sequence voltages are devised to facilitate accurate PSM regardless of the fault currents,resistances,or locations of IBR.Comprehensive time-domain simulations confirm the accuracy of the proposed PSM with different fault locations,resistances,types,and currents.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)(No.RGPIN-2023-0368)Qatar University(No.QUCG-CENG-24/25-485)。
文摘Fault currents emanating from inverter-based resources(IBRs)are controlled to follow specific references to support the power grid during faults.However,these fault currents differ from the typical fault currents fed by synchronous generators,resulting in an improper operation of conventional phase selection methods(PSMs).In this paper,the relative angles between sequence voltages measured at the relay location are determined analytically in two stages:(1)a short-circuit analysis is performed at the fault location to determine the relative angles between sequence voltages;and(2)an analysis of the impact of transmission line on the phase difference between the sequence voltages of relay and fault is conducted for different IBR controllers.Consequently,new PSM zones based on relative angles between sequence voltages are devised to facilitate accurate PSM regardless of the fault currents,resistances,or locations of IBR.Comprehensive time-domain simulations confirm the accuracy of the proposed PSM with different fault locations,resistances,types,and currents.