In this paper,we present a new approach for complex system design,which allows rapid,efficient and low-cost prototyping.This approach can simplify designing tasks and go faster from system modeling to effective hardwa...In this paper,we present a new approach for complex system design,which allows rapid,efficient and low-cost prototyping.This approach can simplify designing tasks and go faster from system modeling to effective hardware implementation.Designing multi-domain systems requires different engineering competences and several tools,our approach gives a unique design environment,based on the use of VHDL-AMS modeling language and FPGA device within the same design tool.This approach is intended to enhance hardware-in-the-loop(HIL)practices with a more realistic simulation which improve the verification process in the system design flow.This paper describes the implementation of a software/hardware platform as a practical support for our approach,the feasibility and the benefits of this approach are demonstrated through a practical case study for power converter control.The obtained results show that the developed method achieves significant speed-up compared with conventional simulation,with a minimum used resources and minimum latency.展开更多
文摘In this paper,we present a new approach for complex system design,which allows rapid,efficient and low-cost prototyping.This approach can simplify designing tasks and go faster from system modeling to effective hardware implementation.Designing multi-domain systems requires different engineering competences and several tools,our approach gives a unique design environment,based on the use of VHDL-AMS modeling language and FPGA device within the same design tool.This approach is intended to enhance hardware-in-the-loop(HIL)practices with a more realistic simulation which improve the verification process in the system design flow.This paper describes the implementation of a software/hardware platform as a practical support for our approach,the feasibility and the benefits of this approach are demonstrated through a practical case study for power converter control.The obtained results show that the developed method achieves significant speed-up compared with conventional simulation,with a minimum used resources and minimum latency.