This study simulates natural convection flow resulting from heat partitions in an H-shaped enclosure filled with a nanofluid using an incompressible smoothed particle hydrodynamics(ISPH)method.The right area of the H-...This study simulates natural convection flow resulting from heat partitions in an H-shaped enclosure filled with a nanofluid using an incompressible smoothed particle hydrodynamics(ISPH)method.The right area of the H-shaped enclosure is saturated with non-Darcy porous media.The center variable partitions of the H-shaped enclosure walls are kept at a high-temperature Th.The left and right walls of the H-shaped enclosure are positioned at a low temperature Tc and the other walls are adiabatic.In ISPH method,the source term in pressure Poisson equation(PPE)is modified.The influences of the controlling parameters on the temperature distributions,the velocity field and average Nusselt number are discussed.The performed simulations proofed that the length of the heated partitions augments the velocity field and temperature distributions in an H-shaped enclosure.Rayleigh number rises the fluid velocity and heat transfer in an H-shaped enclosure.The porous layer on the right side of the H-shaped enclosure at a lower Darcy parameter causes a high resistance force for the fluid flow and heat transfer characteristic inside an H-shaped enclosure.Added nanoparticles reduces the velocity field and enhances the heat transfer inside an H-shaped enclosure.展开更多
In this paper,the Galerkin finite element method(FEM)together with the characteristic-based split(CBS)scheme are applied to study the case of the non-linear Boussinesq approximation within sinusoidal heating inclined ...In this paper,the Galerkin finite element method(FEM)together with the characteristic-based split(CBS)scheme are applied to study the case of the non-linear Boussinesq approximation within sinusoidal heating inclined enclosures filled with a non-Darcy porous media and nanofluids.The enclosure has an inclination angle and its side-walls have varying sinusoidal temperature distributions.The working fluid is a nanofluid that is consisting of water as a based nanofluid and Al2O3 as nanoparticles.The porous medium is modeled using the Brinkman Forchheimer extended Darcy model.The obtained results are analyzed over wide ranges of the non-linear Boussinesq parameter 0≤ζ≤1,the phase deviation 00≤Φ≤1800,the inclination angle 00≤γ≤900,the nanoparticles volume fraction 0%≤φ≤4%,the amplitude ratio 0≤a≤1 and the Rayleigh number 104≤Ra≤106.The results revealed that the average Nusselt number is enhanced by 0.73%,26.46%and 35.42%at Ra=104,105 and 106,respectively,when the non-linearBoussinesq parameter is varied from 0 to 1.In addition,rate of heat transfer in the case of a non-uniformly heating is higher than that of a uniformly heating.Non-linear Boussinesq parameter rises the flow speed and heat transfer in an enclosure.Phase deviation makes clear changes on the isotherms and heat transfer rate on the right wall of an enclosure.An inclination angle varies the flow speed and it has a slight effect on heat transfer in an enclosure.展开更多
In the present work,an incompressible smoothed particle hydrodynamic(SPH)method is introduced to simulate water-soil-structure interactions.In the current calculation,the water is modelled as a Newtonian fluid.The soi...In the present work,an incompressible smoothed particle hydrodynamic(SPH)method is introduced to simulate water-soil-structure interactions.In the current calculation,the water is modelled as a Newtonian fluid.The soil is modelled in two different cases.In the first case,the granular material is considered as a fluid where a Bingham type constitutive model is proposed based on Mohr-Coulomb yield-stress criterion,and the viscosity is derived from the cohesion and friction angle.In addition,the fictitious suspension layers between water and soil depending on the concentration of soil are introduced.In the second case,Hooke’s law introduces elastic soil.In ISPH,the pressure is evaluated by solving the pressure Poisson equation using a semi-implicit algorithm based on the projection method and an eddy viscosity for water is modelled by a large eddy simulation with the Smagorinsky model.In the proposed ISPH method,the pressure is stabilized to simulate the multiphase flow between soil and water.Numerical experiments for water-soil suspension flow of Louvain erosional dam break with flat soil foundation,is simulated and validated using 3D-ISPH method.Coupling between water-soil interactions with different solid structures are simulated.The results revealed that,the suspension layers with the Bingham model of soil gives more accurate results in the experiment as compared to the case of the Bingham model without suspension layers.In addition,the elastic soil model by the Hooke’s law can simulate soil hump accurately as compared to the Bingham model.From the simulations,avoiding erosion behind the structure for preventing the structure break during flood are investigated by using an extended structure or a wedge structure.展开更多
In this paper, we simulated the vertical impact of spheres on a water surface using three-dimensional incompressible smoothed particle hydrodynamics(3-D ISPH) method. The sphere motion is taken to be a rigid body moti...In this paper, we simulated the vertical impact of spheres on a water surface using three-dimensional incompressible smoothed particle hydrodynamics(3-D ISPH) method. The sphere motion is taken to be a rigid body motion and it is modeled by ISPH method. The governing equations are discretized and solved numerically using ISPH method. A stabilized incompressible SPH method by relaxing the density invariance condition is adopted. Here, we computed the motions of a rigid body by direct integration of the fluid pressure at the position of each particle on the body surface. The equations of translational and rotational motion were integrated in time domain to update the position of the rigid body at each time step. In this study, we improved the boundary treatment between fluid and fixed solid boundary by using virtual marker technique. In addition, an improved algorithm based on the virtual marker technique for the boundary particles is proposed to treat the moving boundary of the rigid body motion. The force exerted on the moving rigid boundary particles by the surrounding particles, is calculated by the SPH approximation at the virtual marker points. The applicability and efficiency of the current ISPH method are tested by comparison with reference experimental results.展开更多
基金The authors would like to extend their appreciations to the Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia,for funding this work through the Research Group Project under Grant Number(R.G.P 2/70/41).
文摘This study simulates natural convection flow resulting from heat partitions in an H-shaped enclosure filled with a nanofluid using an incompressible smoothed particle hydrodynamics(ISPH)method.The right area of the H-shaped enclosure is saturated with non-Darcy porous media.The center variable partitions of the H-shaped enclosure walls are kept at a high-temperature Th.The left and right walls of the H-shaped enclosure are positioned at a low temperature Tc and the other walls are adiabatic.In ISPH method,the source term in pressure Poisson equation(PPE)is modified.The influences of the controlling parameters on the temperature distributions,the velocity field and average Nusselt number are discussed.The performed simulations proofed that the length of the heated partitions augments the velocity field and temperature distributions in an H-shaped enclosure.Rayleigh number rises the fluid velocity and heat transfer in an H-shaped enclosure.The porous layer on the right side of the H-shaped enclosure at a lower Darcy parameter causes a high resistance force for the fluid flow and heat transfer characteristic inside an H-shaped enclosure.Added nanoparticles reduces the velocity field and enhances the heat transfer inside an H-shaped enclosure.
基金the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number(R.G.P2/72/41).
文摘In this paper,the Galerkin finite element method(FEM)together with the characteristic-based split(CBS)scheme are applied to study the case of the non-linear Boussinesq approximation within sinusoidal heating inclined enclosures filled with a non-Darcy porous media and nanofluids.The enclosure has an inclination angle and its side-walls have varying sinusoidal temperature distributions.The working fluid is a nanofluid that is consisting of water as a based nanofluid and Al2O3 as nanoparticles.The porous medium is modeled using the Brinkman Forchheimer extended Darcy model.The obtained results are analyzed over wide ranges of the non-linear Boussinesq parameter 0≤ζ≤1,the phase deviation 00≤Φ≤1800,the inclination angle 00≤γ≤900,the nanoparticles volume fraction 0%≤φ≤4%,the amplitude ratio 0≤a≤1 and the Rayleigh number 104≤Ra≤106.The results revealed that the average Nusselt number is enhanced by 0.73%,26.46%and 35.42%at Ra=104,105 and 106,respectively,when the non-linearBoussinesq parameter is varied from 0 to 1.In addition,rate of heat transfer in the case of a non-uniformly heating is higher than that of a uniformly heating.Non-linear Boussinesq parameter rises the flow speed and heat transfer in an enclosure.Phase deviation makes clear changes on the isotherms and heat transfer rate on the right wall of an enclosure.An inclination angle varies the flow speed and it has a slight effect on heat transfer in an enclosure.
基金This work was supported by Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia,through the Research Group Project under grant number R.G.P2/70/41.
文摘In the present work,an incompressible smoothed particle hydrodynamic(SPH)method is introduced to simulate water-soil-structure interactions.In the current calculation,the water is modelled as a Newtonian fluid.The soil is modelled in two different cases.In the first case,the granular material is considered as a fluid where a Bingham type constitutive model is proposed based on Mohr-Coulomb yield-stress criterion,and the viscosity is derived from the cohesion and friction angle.In addition,the fictitious suspension layers between water and soil depending on the concentration of soil are introduced.In the second case,Hooke’s law introduces elastic soil.In ISPH,the pressure is evaluated by solving the pressure Poisson equation using a semi-implicit algorithm based on the projection method and an eddy viscosity for water is modelled by a large eddy simulation with the Smagorinsky model.In the proposed ISPH method,the pressure is stabilized to simulate the multiphase flow between soil and water.Numerical experiments for water-soil suspension flow of Louvain erosional dam break with flat soil foundation,is simulated and validated using 3D-ISPH method.Coupling between water-soil interactions with different solid structures are simulated.The results revealed that,the suspension layers with the Bingham model of soil gives more accurate results in the experiment as compared to the case of the Bingham model without suspension layers.In addition,the elastic soil model by the Hooke’s law can simulate soil hump accurately as compared to the Bingham model.From the simulations,avoiding erosion behind the structure for preventing the structure break during flood are investigated by using an extended structure or a wedge structure.
文摘In this paper, we simulated the vertical impact of spheres on a water surface using three-dimensional incompressible smoothed particle hydrodynamics(3-D ISPH) method. The sphere motion is taken to be a rigid body motion and it is modeled by ISPH method. The governing equations are discretized and solved numerically using ISPH method. A stabilized incompressible SPH method by relaxing the density invariance condition is adopted. Here, we computed the motions of a rigid body by direct integration of the fluid pressure at the position of each particle on the body surface. The equations of translational and rotational motion were integrated in time domain to update the position of the rigid body at each time step. In this study, we improved the boundary treatment between fluid and fixed solid boundary by using virtual marker technique. In addition, an improved algorithm based on the virtual marker technique for the boundary particles is proposed to treat the moving boundary of the rigid body motion. The force exerted on the moving rigid boundary particles by the surrounding particles, is calculated by the SPH approximation at the virtual marker points. The applicability and efficiency of the current ISPH method are tested by comparison with reference experimental results.