期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The Effect of Replacement of Zn 2+ Cation with Ni 2+ Cation on the Structural Properties of Ba sub>2Zn sub>1–x Ni sub>xWO sub>6 Double Perovskite Oxides (X = 0, 0.25, 0.50, 0.75, 1) 被引量:2
1
作者 Yousif a. alsabah abdelrahman a. elbadawi +1 位作者 Eltayeb M. Mustafa Mohamed a. Siddig 《Journal of Materials Science and Chemical Engineering》 2016年第2期61-70,共10页
The Ba2Zn1-xNixWO6 double perovskite oxides were synthesized using solid state reaction method. The effect of replacement of Zn<sup>2+</sup> with Ni<sup>2+</sup> cation on the structural proper... The Ba2Zn1-xNixWO6 double perovskite oxides were synthesized using solid state reaction method. The effect of replacement of Zn<sup>2+</sup> with Ni<sup>2+</sup> cation on the structural properties was investigated by X-ray diffraction (XRD) at room temperature. From the X-ray diffraction and by means of standard Rietiveld method, the samples showed the same cubic crystal structure with (Fm-3m) space group and the crystallite size ranging from 71.91 nm to 148.71 nm. The unit cell volume was found to decrease as a result of the replacement, while there was no significant difference in the value of tolerance factor of the samples. This is may be due to the convergence of ionic radii of Ni<sup>2+</sup> and Zn<sup>2+</sup> cations. The Fourier Transform Infrared Spectroscopy (FTIR) was performed for the samples and the resultant characteristic absorption bands confirmed the double perovskite structure. 展开更多
关键词 Double Perovskite XRD FTIR Solid State Reaction Method Tolerance Factor
下载PDF
Characterization of the Crystal Structure of Sesame Seed Cake Burned by Nd: YAG Laser
2
作者 Muna a. Pn Gawbah abdelrahman a. elbadawi +2 位作者 Yousef a. alsabah Mohammed U. Orsod ali a. S. Marouf 《Journal of Materials Science and Chemical Engineering》 2018年第4期121-131,共11页
This paper reports obtaining of useful and high-value materials from sesame seed cake (SSC). For this purpose, SSC sample was burned for 30 s using Nd: YAG laser with output power 60 W. The products of this process an... This paper reports obtaining of useful and high-value materials from sesame seed cake (SSC). For this purpose, SSC sample was burned for 30 s using Nd: YAG laser with output power 60 W. The products of this process and non-burned SSC were characterized by X-ray diffractometer (XRD), energy dispersive x-ray (EDX) and Fourier transform infrared (FTIR) so as to investigate its crystal structure and chemical components. XRD results of the SSC before burning process showed amorphous silica, rhombohedral phase of carbon, monoclinic phase of aluminum chloride, the hexagonal phase of moissanite-4H, (yellow, black) and hexagonal phase of graphite-2H, C (black). While the results of the burned SSC sample showed that the burning process using the power of Nd: YAG laser cased in appearing of crystalline hexagonal phase for silica and Carbon Nitride and converting the rhombohedral phase of Carbon into hexagonal phase. FTIR showed a number of absorbance peaks assigned to silica. 展开更多
关键词 Crystal Structure FTIR HEXAGONAL Carbon Laser-Based Combustion SESAME SEED CAKE SESAME Oil CAKE SILICA XRD
下载PDF
Influenced of Cu<sup>2+</sup>Doped on Structural, Morphological and Optical Properties of Zn-Mg-Fe<sub>2</sub>O<sub>4</sub>Ferrite Prepared by Sol-Gel Method
3
作者 Badawi M. ali Yousef a. alsabah +3 位作者 Mohamed a. Siddig abdelrahman a. elbadawi abdalrawf I. ahmed abdulmajid a. Mirghni 《Advances in Nanoparticles》 2020年第2期49-58,共10页
The Zn0.5CuxMg0.5-xFe2O4 (where x = 0.0, 0.1, 0.2, 0.3 and 0.4) was prepared by sol-gel route and characterized in detail in terms of their structural, morphological, elemental and optical properties as a function of ... The Zn0.5CuxMg0.5-xFe2O4 (where x = 0.0, 0.1, 0.2, 0.3 and 0.4) was prepared by sol-gel route and characterized in detail in terms of their structural, morphological, elemental and optical properties as a function of Cu concentration. X-ray diffractometer (XRD) results confirmed the formation of cubic spinel-type structure with average crystallized size in the range of 30.56 to 40.58 nm. Lattice parameter was found to decrease with Cu concentration due to the smaller ionic radius of Cu2+ ion. The HR-SEM images show morphology of the samples as prismatic shaped particles in agglomeration. The elemental dispersive X-ray Spectroscopy (EDX) confirmed the elemental composition of the as-prepared spinel ferrite material with respect to the initial concentration of the synthetic composition used for the material. The Fourier transform infrared (FTIR) spectroscopy confirmed the formation of spinel ferrite and showed the characteristics absorption bands around 463, 618, 876, 1116, 1442, 1622 and 2911 cm-1. The energy band gap was calculated for the samples were found to be in the range of 4.87 to 5.30 eV. 展开更多
关键词 FTIR Nano FERRITE SEM UV-VIS XRD Zn-Mg-Fe2O4 FERRITE
下载PDF
Structural and Optical Properties of Mg<SUB>1-x</SUB>Zn<SUB>x</SUB>Fe<SUB>2</SUB>O<SUB>4</SUB>Nano-Ferrites Synthesized Using Co-Precipitation Method
4
作者 abdalrawf I. ahmed Mohamed a. Siddig +2 位作者 abdulmajid a. Mirghni Mohamed I. Omer abdelrahman a. elbadawi 《Advances in Nanoparticles》 2015年第2期45-52,共8页
In this work, the Mg1-x Znx Fe2 O4 Nanoferrites (where x = 0.0, 0.2, 0.4, 0.6 and 0.8) was synthesized using co-precipitation method. The investigation of structural and optical properties was carried out for the synt... In this work, the Mg1-x Znx Fe2 O4 Nanoferrites (where x = 0.0, 0.2, 0.4, 0.6 and 0.8) was synthesized using co-precipitation method. The investigation of structural and optical properties was carried out for the synthesized samples using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Ultraviolet visible spectrophotometer (UV-Vis). XRD revealed that the structure of these nanoparticles is spinel with space group Fd3m and crystallite size lies in the range 21.0 - 42.8 nm. Lattice parameter was found to increases with Zn concentration and this may be due to the larger ionic radius of the Zn2+?ion. FTIR spectroscopy confirmed the formation of spinel ferrite and showed the characteristics absorption bands around 612, 1146, 1404, 1649 and 3245 cm-1. The energy band gap was calculated for samples with different ratio and was found to be 4.77, 4.82, 4.86, 4.87 and 4.95 eV. The substitution was resulted in slight increased in the lattice constant and that sequentially may lead to the slightly decreased in the energy gap. 展开更多
关键词 CO-PRECIPITATION Method Ferrite Nanoparticles SPINEL Structure XRD
下载PDF
Effect of the Cation Size Disorder at the A-Site on the Structural Properties of SrAFeTiO<SUB>6</SUB>Double Perovskites (A = La, Pr or Nd)
5
作者 abdelrahman a. elbadawi O. a. Yassin Mohamed a. Siddig 《Journal of Materials Science and Chemical Engineering》 2015年第5期21-29,共9页
In this paper, the cation size disorder effect of the A-site on the structural properties of the SrAFe- TiO6 (A = La, Pr or Nd) was investigated. The compounds were synthesized—as the best of our knowledge—for the f... In this paper, the cation size disorder effect of the A-site on the structural properties of the SrAFe- TiO6 (A = La, Pr or Nd) was investigated. The compounds were synthesized—as the best of our knowledge—for the first time by conventional and precursor method to get crystalline materials. The results obtained from the experimental measurements carried out on new double perovskite materials were presented. The data of X-ray diffraction (XRD), Fourier Transform Infra Red FTIR were measured at room temperature. From the X-ray diffraction, and by means of standard Rietiveld method, all the samples have the same structure (orthorhombic) with Pnma space group. The difference in the tolerance factor is clearly noticed and refers to the cation size disorder at the A-sites. The Fourier Transform Infra Red FTIR measurement has been done;the results of it confirm the double perovskite structure and the difference between the samples were noticed. The tolerance factors for the samples altered from SrLaFeTiO6 up to SrNdFeTiO6 and this difference return to ionic radius and cation size effect. 展开更多
关键词 CATION DISORDER Double PEROVSKITE Tolerance Factor
下载PDF
The Electrical and Optical Properties of Zn0.5Li2xMg0.5-xFe2O4 Lithium Doped Nanoparticle Prepared by Coprecipitation Method
6
作者 Nisreen a. Elthair Eltayeb M. Mustafa abdelrahman a. elbadawi 《Open Journal of Applied Sciences》 2020年第9期551-560,共10页
In this study, nano ferrite materials were produced to replace costive industrial materials<span style="font-family:;" "=""> </span><span style="font-family:Verdana;"&... In this study, nano ferrite materials were produced to replace costive industrial materials<span style="font-family:;" "=""> </span><span style="font-family:Verdana;"><span style="font-size:10.0pt;font-family:" color:#943634;"=""><span style="font-family:Verdana;white-space:normal;">[1]</span></span><span style="font-size:10.0pt;font-family:;" "=""></span><span style="font-size:10.0pt;font-family:" times="" new="" roman","serif";"=""><span></span></span></span><span></span><span><span></span></span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Ferrite nanoparticles are the interesting material due to their rich and unique physical and chemical properties. They find applications in catalysis, bio-processing, medicine, magnetic recording, adsorption, devices etc.</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Using co-participation method, five nano ferrite samples Zn</span><sub><span style="font-family:Verdana;">0.5</span></sub><span style="font-family:Verdana;">Mg</span><sub><span style="font-family:Verdana;">0.5-x</span></sub><span style="font-family:Verdana;">Li</span><sub><span style="font-family:Verdana;">2x</span></sub><span style="font-family:Verdana;">Fe</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> (x = 0.00, 0.10, 0.20, 0.30 and 0.40) were prepared. The electrical and optical properties of the Zn</span><sub><span style="font-family:Verdana;">0.5</span></sub><span style="font-family:Verdana;">Mg</span><sub><span style="font-family:Verdana;">0.5-x</span></sub><span style="font-family:Verdana;">Li</span><sub><span style="font-family:Verdana;">2x</span></sub><span style="font-family:Verdana;">Fe</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> samples were studied using the Ultraviolet-visible (UV-Vis) spectroscopy. The results verified that the formation of the absorption coefficient of the five samples of Zn</span><sub><span style="font-family:Verdana;">0.5</span></sub><span style="font-family:Verdana;">Mg</span><sub><span style="font-family:Verdana;">0.5-x</span></sub><span style="font-family:Verdana;">Li</span><sub><span style="font-family:Verdana;">2x</span></sub><span style="font-family:Verdana;">Fe</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> increased with the increase of Lithium (Li</span><sub><span style="font-family:Verdana;">2x</span></sub><span style="font-family:Verdana;">). The energy band gap of the Zn</span><sub><span style="font-family:Verdana;">0.5</span></sub><span style="font-family:Verdana;">Mg</span><sub><span style="font-family:Verdana;">0.5-x</span></sub><span style="font-family:Verdana;">Li</span><sub><span style="font-family:Verdana;">2x</span></sub><span style="font-family:Verdana;">Fe</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> samples ranged </span></span><span style="font-family:Verdana;">from</span><span style="font-family:Verdana;"> 3.28 to 3.12</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">eV</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">[1]</span><span style="font-family:;" "=""></span><span style="font-family:" minion="" pro="" capt","serif";"=""><span></span></span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">The extinction coefficient (K) for five samples of Zn</span><sub><span style="font-family:Verdana;">0.5</span></sub><span style="font-family:Verdana;">Li</span><sub><span style="font-family:Verdana;">2x</span></sub><span style="font-family:Verdana;">Mg</span><sub><span style="font-family:Verdana;">0.5-x</span></sub><span style="font-family:Verdana;">Fe</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> increased with the increase of Lithium (Li</span><sub><span style="font-family:Verdana;">2x</span></sub><span style="font-family:Verdana;">) at 338 nm f</span></span><span style="font-family:Verdana;">ro</span><span style="font-family:Verdana;">m 0.074 to 0.207. The high magnitude of optical conductivity is (1.34</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">×</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">10</span><sup><span style="font-family:Verdana;">12</span></sup><span style="font-family:Verdana;"> sec<span style="font-size:10px;"><sup>-1</sup></span></span><span style="font-family:Verdana;">) and the maximum value of electrical conductivity is 42</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">(Ω<sup>.</sup></span><span style="font-family:;" "=""><span><span style="font-family:Verdana;">cm)<span style="font-size:10px;"><sup>-1</sup></span></span><span style="font-family:Verdana;">. This may due to the electrical and optical properties of lithium.</span></span></span> 展开更多
关键词 Zn0.5Mg0.5-xLi2xFe2O4 Nano Ferrites UV.vis CO-PRECIPITATION Electrical Proper-ties Optical Properties
下载PDF
Effect of Cu<sup>2+</sup>Doping on Structural and Optical Properties of Synthetic Zn<sub>0.5</sub>Cu<sub>x</sub>Mg<sub>0.5-x</sub>Fe<sub>2</sub>O<sub>4</sub>(x = 0.0, 0.1, 0.2, 0.3, 0.4) Nano-Ferrites
7
作者 Badawi M. ali Mohamed a. Siddig +2 位作者 Yousef a. alsabah abdelrahman a. elbadawi abdalrawf I. ahmed 《Advances in Nanoparticles》 2018年第1期1-10,共10页
The samples of Zn0.5CuxMg0.5-xFe2O4 nanoparticle ferrites, with x= 0.0, 0.1, 0.2, 0.3, 0.4 were successfully synthesised. Structural and optical properties were investigated by X-ray Diffraction (XRD), Fourier Transfo... The samples of Zn0.5CuxMg0.5-xFe2O4 nanoparticle ferrites, with x= 0.0, 0.1, 0.2, 0.3, 0.4 were successfully synthesised. Structural and optical properties were investigated by X-ray Diffraction (XRD), Fourier Transform Infrared spectros-copy (FTIR) and UV-visible spectroscopy. The structural studies showed that all the samples prepared through the Co-precipitation method was a single phase of a face-cantered-Cubic (FCC) spinel symmetry structures with space group (SG): Fd-3m. In the series Zn0.5CuxMg0.5-xFe2O4, the lattice parameter was found to be 8.382 ? for x = 0 and was found to increase with copper con-centration. The grain size obtained from the XRD data analyses was found to be in the range of 15.97 to 28.33 nm. The increased in the grain size may be due to the large ionic radius of Mg2+ (0.86 ?) compared with Cu2+ (0.73 ?). The FTIR spectroscopy confirmed the formation of spinel ferrite and showed the characteristics absorption bands around 580, 1112, 1382, 1682, 1632 and 2920 cm-1. The energy band gap was calculated for samples were found to be in the range 4.04 to 4.67 eV. 展开更多
关键词 Ferrite Nanostructure Spinel Structure X-Ray Diffraction XRD FTIR UV.vis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部