A green, easy to reproduce method to obtain thermally reduced graphene oxide (GO) is described, The only requirement is a heating source, like a hot plate, that can reach -225 ℃ without any special setup requiremen...A green, easy to reproduce method to obtain thermally reduced graphene oxide (GO) is described, The only requirement is a heating source, like a hot plate, that can reach -225 ℃ without any special setup requirements. Upon addition of graphene oxide, effective reduction could be achieved within 10 s. Starting flake size affects the yield of graphene, final structure and composition. A detailed characterization of the produced graphene using thermal analysis, spectroscopic methods, electron microscopy, X-ray diffraction and atomic force microscopy is presented. Application of the produced graphene as a filler to epoxy resin for mechanical reinforcement is also reported. Smaller flakes (Ds0 = 5.7 μm) showed improved ultimate tensile strength, fracture strain and plane strain fracture toughness compared to larger flakes (Ds0 = 47.9 μm) that showed negative effect. Both flake sizes showed a negligible effect on Young's modulus.展开更多
基金generously supported by the Space Core Technology Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Science,ICT and Future Planning (No.2013M1A3A3A02042257)
文摘A green, easy to reproduce method to obtain thermally reduced graphene oxide (GO) is described, The only requirement is a heating source, like a hot plate, that can reach -225 ℃ without any special setup requirements. Upon addition of graphene oxide, effective reduction could be achieved within 10 s. Starting flake size affects the yield of graphene, final structure and composition. A detailed characterization of the produced graphene using thermal analysis, spectroscopic methods, electron microscopy, X-ray diffraction and atomic force microscopy is presented. Application of the produced graphene as a filler to epoxy resin for mechanical reinforcement is also reported. Smaller flakes (Ds0 = 5.7 μm) showed improved ultimate tensile strength, fracture strain and plane strain fracture toughness compared to larger flakes (Ds0 = 47.9 μm) that showed negative effect. Both flake sizes showed a negligible effect on Young's modulus.