期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Genome-Wide Identification of ALDH Gene Family under Salt and Drought Stress in Phaseolus vulgaris
1
作者 abdil hakan eren 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第11期2883-2907,共25页
Background:Aldehyde dehydrogenase(ALDH)genes constitute an important family of supergenes that play key roles in synthesizing various biomolecules and maintaining cellular homeostasis by catalyzing the oxidation of al... Background:Aldehyde dehydrogenase(ALDH)genes constitute an important family of supergenes that play key roles in synthesizing various biomolecules and maintaining cellular homeostasis by catalyzing the oxidation of aldehyde products.With climate change increasing the exposure of plants to abiotic stresses such as salt and drought,ALDH genes have been identified as important contributors to stress tolerance.In particular,they help to reduce stress-induced lipid peroxidation.Objectives:This study aims to identify and characterize members of the ALDH supergene family in Phaseolus vulgaris through a genome-wide bioinformatic analysis and investigate their role in response to abiotic stressors such as drought and salt stress.Methods:Genome-wide identification of 26 ALDH genes in P.vulgaris was performed using bioinformatics tools.The identified ALDH proteins were ana-lyzed for molecular weight,amino acid number,and exon number.Phylogenetic analysis was performed to clas-sify P.vulgaris,Arabidopsis thaliana,and Glycine max ALDH proteins into different groups.Strong links between these genes and functions related to growth,development,stress responses,and hormone signaling were identified by cis-element analysis in promoter regions.In silico expression,analysis was performed to assess gene expression levels in different plant tissues.Results:RT-qPCR results showed that the expression of ALDH genes was signif-icantly altered under drought and salt stress in beans.This study provides a comprehensive characterization of the ALDH supergene family in P.vulgaris,highlighting their potential role in abiotic stress tolerance.Conclusion:Thesefindings provide a basis for future research on the functional roles of ALDH genes in enhancing plant resis-tance to environmental stressors. 展开更多
关键词 Aldehyde dehydrogenase common bean digital gene expression drought and salt stress genome-wide analysis in silico analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部