期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
EXISTENCE TO FRACTIONAL CRITICAL EQUATION WITH HARDY-LITTLEWOOD-SOBOLEV NONLINEARITIES
1
作者 Nemat NYAMORADI abdolrahman razani 《Acta Mathematica Scientia》 SCIE CSCD 2021年第4期1321-1332,共12页
In this paper,we consider the following new Kirchhoff-type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity:(A+B∫∫_(R^(2N))|u(x)-u(y)|^(p)/|x-y|^(N+ps)dxdy)^(p-1)(-△... In this paper,we consider the following new Kirchhoff-type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity:(A+B∫∫_(R^(2N))|u(x)-u(y)|^(p)/|x-y|^(N+ps)dxdy)^(p-1)(-△)_(p)^(s)u+λV(x)|u|^(p-2)u=(∫_(R^(N))|U|^(P_(μ,S)^(*))/|x-y|^(μ)dy)|u|^(P_(μ,S)^(*))^(-2)u,x∈R^(N),where(-△)_(p)^(s)is the fractional p-Laplacian with 0<s<1<p,0<μ<N,N>ps,a,b>0,λ>0 is a parameter,V:R^(N)→R^(+)is a potential function,θ∈[1,2_(μ,s)^(*))and P_(μ,S)^(*)=pN-pμ/2/N-ps is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality.We get the existence of infinitely many solutions for the above problem by using the concentration compactness principle and Krasnoselskii’s genus theory.To the best of our knowledge,our result is new even in Choquard-Kirchhoff-type equations involving the p-Laplacian case. 展开更多
关键词 Hardy-Littlewood-Sobolev inequality concentration-compactness principle variational method Fractional p-Laplacian operators multiple solutions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部