In this paper,we have proposed and demonstrated the generation of passively mode-locked pulses and dissipative soliton resonance in an erbium-doped fiber laser based on Fe3O4 nanoparticles as saturable absorbers.We ob...In this paper,we have proposed and demonstrated the generation of passively mode-locked pulses and dissipative soliton resonance in an erbium-doped fiber laser based on Fe3O4 nanoparticles as saturable absorbers.We obtained self-starting mode-locked pulses with fundamental repetition frequency of 7.69 MHz and center wavelength of 1561 nm.The output of a pulsed laser has spectral width of 0.69 nm and pulse duration of 14 ns with rectangular pulse profile at the pump power of 190 mW.As far as we know,this is the first time that Fe3O4 nanoparticles have been developed as low-dimensional materials for passive mode-locking with rectangular pulse.Our experiments have confirmed that Fe3O4 has a wide prospect as a nonlinear photonics device for ultrafast fiber laser applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61605106)Funded projects for the Academic Leader and Academic Backbones,Shaanxi Normal University(No.18QNGG006)+3 种基金Shaanxi International Cooperation Project(No.2020KW-005)Starting Grants of Shaanxi Normal University(Nos.1112010209 and 1110010717)Open Research Fund of State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences(No.SKLST201809)Fundamental Research Funds for the Central Universities(Nos.GK201802006 and 2018CSLY005).
文摘In this paper,we have proposed and demonstrated the generation of passively mode-locked pulses and dissipative soliton resonance in an erbium-doped fiber laser based on Fe3O4 nanoparticles as saturable absorbers.We obtained self-starting mode-locked pulses with fundamental repetition frequency of 7.69 MHz and center wavelength of 1561 nm.The output of a pulsed laser has spectral width of 0.69 nm and pulse duration of 14 ns with rectangular pulse profile at the pump power of 190 mW.As far as we know,this is the first time that Fe3O4 nanoparticles have been developed as low-dimensional materials for passive mode-locking with rectangular pulse.Our experiments have confirmed that Fe3O4 has a wide prospect as a nonlinear photonics device for ultrafast fiber laser applications.