Vibrational and H-NMR spectroscopic studies on di-μ-chlorobis(1,5-cyclooctadiene) of iridium(I) and rhodium (I) complexes have been carried out. In addition, the two D2h and D2 structures for both complexes have been...Vibrational and H-NMR spectroscopic studies on di-μ-chlorobis(1,5-cyclooctadiene) of iridium(I) and rhodium (I) complexes have been carried out. In addition, the two D2h and D2 structures for both complexes have been fully optimized. It was expected from the single-molecule vapor-phase density functional theory (DFT) calculation that the D2 structure is more stable by 5 - 6 kcal/mol. While spectroscopic analysis study confirms that in the solid phase, the two complexes retain the higher D2h symmetry. The vibrational wavenumbers of certain modes associated to free 1,5-cyc- looctadiene were observed to be shifted to lower values upon coordination with rhodium or iridium metals. It was also found theoretically that the metal-olefin interaction is slightly more pronounced for iridium metal.展开更多
文摘Vibrational and H-NMR spectroscopic studies on di-μ-chlorobis(1,5-cyclooctadiene) of iridium(I) and rhodium (I) complexes have been carried out. In addition, the two D2h and D2 structures for both complexes have been fully optimized. It was expected from the single-molecule vapor-phase density functional theory (DFT) calculation that the D2 structure is more stable by 5 - 6 kcal/mol. While spectroscopic analysis study confirms that in the solid phase, the two complexes retain the higher D2h symmetry. The vibrational wavenumbers of certain modes associated to free 1,5-cyc- looctadiene were observed to be shifted to lower values upon coordination with rhodium or iridium metals. It was also found theoretically that the metal-olefin interaction is slightly more pronounced for iridium metal.