A Schiff base L [2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene)hydrazide] with its lanthanide metal complexes was synthesized. These complexes were characterized by elemental analysis, molar conductivity measu...A Schiff base L [2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene)hydrazide] with its lanthanide metal complexes was synthesized. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis(NMR, FT-IR, and UV-Vis), luminescence and thermal gravimetric analysis. The Schiff base ligand was a tridentate chelate and coordinates to the central lanthanide ion with 1:2 metal:ligand ratio. The conductivity data showed a 1:1 electrolytic nature with a general formula [LnL_2(NO_3)_2]NO_3. The luminescence emission properties for Sm, Tb, and Eu complexes were observed and showed that the ligand L could absorb and transfer energy to Sm(III), Tb(III) and Eu(III) ions. The complexes possessed a good antibacterial activity against different bacterial strains. In addition, the scavenging activity of the Ln(III) complexes on DPPH was concentration dependant and the complexes were significantly more efficient in quenching DPPH than the free Schiff base ligand.展开更多
基金Project supported by Jordan University of Science and Technology Research Fund Project(2011/202)
文摘A Schiff base L [2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene)hydrazide] with its lanthanide metal complexes was synthesized. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis(NMR, FT-IR, and UV-Vis), luminescence and thermal gravimetric analysis. The Schiff base ligand was a tridentate chelate and coordinates to the central lanthanide ion with 1:2 metal:ligand ratio. The conductivity data showed a 1:1 electrolytic nature with a general formula [LnL_2(NO_3)_2]NO_3. The luminescence emission properties for Sm, Tb, and Eu complexes were observed and showed that the ligand L could absorb and transfer energy to Sm(III), Tb(III) and Eu(III) ions. The complexes possessed a good antibacterial activity against different bacterial strains. In addition, the scavenging activity of the Ln(III) complexes on DPPH was concentration dependant and the complexes were significantly more efficient in quenching DPPH than the free Schiff base ligand.