A quantum image searching method is proposed based on the probability distributions of the readouts from the quantum measurements. It is achieved by using low computational resources which are only a single Hadamard g...A quantum image searching method is proposed based on the probability distributions of the readouts from the quantum measurements. It is achieved by using low computational resources which are only a single Hadamard gate combined with m + 1 quantum measurement operations. To validate the proposed method, a simulation experiment is used where the image with the highest similarity value of 0.93 to the particular test image is retrieved as the search result from 4 × 4 binary image database. The proposal provides a basic step for designing a search engine on quantum computing devices where the image in the database is retrieved based on its similarity to the test image.展开更多
A framework that introduces chromatic considerations to earlier descriptions of movies on quantum computers is proposed. This chromatic framework for quantum movies (CFQM) integrates chromatic components of individu...A framework that introduces chromatic considerations to earlier descriptions of movies on quantum computers is proposed. This chromatic framework for quantum movies (CFQM) integrates chromatic components of individual frames (each a multi-channel quantum image - MCQI state) that make up the movie, while each frame is tagged to a time component of a quantum register (i.e., a movie strip). The formulation of the CFQM framework and properties inherent to the MCQI images facilitate the execution of a cortege of carefully formulated transformations including the frame-to-frame (FTF), color of interest (COI), and subblock swapping (SBS) operations that are not realizable on other quantum movie formats. These innovative transformations are deployed in the creation of digital movie-like montages on the CFQM framework. Future studies could explore additional MCQI-related operations and their use to execute more advanced montage applications.展开更多
文摘A quantum image searching method is proposed based on the probability distributions of the readouts from the quantum measurements. It is achieved by using low computational resources which are only a single Hadamard gate combined with m + 1 quantum measurement operations. To validate the proposed method, a simulation experiment is used where the image with the highest similarity value of 0.93 to the particular test image is retrieved as the search result from 4 × 4 binary image database. The proposal provides a basic step for designing a search engine on quantum computing devices where the image in the database is retrieved based on its similarity to the test image.
文摘A framework that introduces chromatic considerations to earlier descriptions of movies on quantum computers is proposed. This chromatic framework for quantum movies (CFQM) integrates chromatic components of individual frames (each a multi-channel quantum image - MCQI state) that make up the movie, while each frame is tagged to a time component of a quantum register (i.e., a movie strip). The formulation of the CFQM framework and properties inherent to the MCQI images facilitate the execution of a cortege of carefully formulated transformations including the frame-to-frame (FTF), color of interest (COI), and subblock swapping (SBS) operations that are not realizable on other quantum movie formats. These innovative transformations are deployed in the creation of digital movie-like montages on the CFQM framework. Future studies could explore additional MCQI-related operations and their use to execute more advanced montage applications.