期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network
1
作者 Nasir Sayed Muhammad Shoaib +3 位作者 Waqas Ahmed Sultan Noman Qasem abdullah m.albarrak Faisal Saeed 《Computers, Materials & Continua》 SCIE EI 2023年第1期1351-1374,共24页
Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to secure.Moreover,the rapid growth of IoT devices in homes increases the risk of cyber-attacks.Intrusion det... Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to secure.Moreover,the rapid growth of IoT devices in homes increases the risk of cyber-attacks.Intrusion detection systems(IDS)are commonly employed to prevent cyberattacks.These systems detect incoming attacks and instantly notify users to allow for the implementation of appropriate countermeasures.Attempts have been made in the past to detect new attacks using machine learning and deep learning techniques,however,these efforts have been unsuccessful.In this paper,we propose two deep learning models to automatically detect various types of intrusion attacks in IoT networks.Specifically,we experimentally evaluate the use of two Convolutional Neural Networks(CNN)to detect nine distinct types of attacks listed in the NF-UNSW-NB15-v2 dataset.To accomplish this goal,the network stream data were initially converted to twodimensional images,which were then used to train the neural network models.We also propose two baseline models to demonstrate the performance of the proposed models.Generally,both models achieve high accuracy in detecting the majority of these nine attacks. 展开更多
关键词 Internet of things intrusion detection system deep learning convolutional neural network supervised learning
下载PDF
Prediction of the SARS-CoV-2 Derived T-Cell Epitopes’Response Against COVID Variants
2
作者 Hassam Tahir Muhammad Shahbaz Khan +3 位作者 Fawad Ahmed abdullah m.albarrak Sultan Noman Qasem Jawad Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第5期3517-3535,共19页
TheCOVID-19 outbreak began in December 2019 andwas declared a global health emergency by the World Health Organization.The four most dominating variants are Beta,Gamma,Delta,and Omicron.After the administration of vac... TheCOVID-19 outbreak began in December 2019 andwas declared a global health emergency by the World Health Organization.The four most dominating variants are Beta,Gamma,Delta,and Omicron.After the administration of vaccine doses,an eminent decline in new cases has been observed.The COVID-19 vaccine induces neutralizing antibodies and T-cells in our bodies.However,strong variants likeDelta and Omicron tend to escape these neutralizing antibodies elicited by COVID-19 vaccination.Therefore,it is indispensable to study,analyze and most importantly,predict the response of SARS-CoV-2-derived t-cell epitopes against Covid variants in vaccinated and unvaccinated persons.In this regard,machine learning can be effectively utilized for predicting the response of COVID-derived t-cell epitopes.In this study,prediction of T-cells Epitopes’response was conducted for vaccinated and unvaccinated people for Beta,Gamma,Delta,and Omicron variants.The dataset was divided into two classes,i.e.,vaccinated and unvaccinated,and the predicted response of T-cell Epitopes was divided into three categories,i.e.,Strong,Impaired,and Over-activated.For the aforementioned prediction purposes,a self-proposed Bayesian neural network has been designed by combining variational inference and flow normalization optimizers.Furthermore,the Hidden Markov Model has also been trained on the same dataset to compare the results of the self-proposed Bayesian neural network with this state-of-the-art statistical approach.Extensive experimentation and results demonstrate the efficacy of the proposed network in terms of accurate prediction and reduced error. 展开更多
关键词 Omicron COVID-19 hidden Markov model Bayesian neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部