期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Short Review of Classification Algorithms Accuracy for Data Prediction in Data Mining Applications 被引量:1
1
作者 Ibrahim Ba’abbad Thamer Althubiti +2 位作者 abdulmohsen alharbi Khalid Alfarsi Saim Rasheed 《Journal of Data Analysis and Information Processing》 2021年第3期162-174,共13页
Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of informatio... Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of information that help</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> to market the appropriate products at the appropriate time. Moreover, services are considered recently as products. The development of education and health services </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span><span style="font-family:Verdana;"> depending on historical data. For the more, reducing online social media networks problems and crimes need a significant source of information. Data analysts need to use an efficient classification algorithm to predict the future of such businesses. However, dealing with a huge quantity of data requires great time to process. Data mining involves many useful techniques that are used to predict statistical data in a variety of business applications. The classification technique is one of the most widely used with a variety of algorithms. In this paper, various classification algorithms are revised in terms of accuracy in different areas of data mining applications. A comprehensive analysis is made after delegated reading of 20 papers in the literature. This paper aims to help data analysts to choose the most suitable classification algorithm for different business applications including business in general, online social media networks, agriculture, health, and education. Results show FFBPN is the most accurate algorithm in the business domain. The Random Forest algorithm is the most accurate in classifying online social networks (OSN) activities. Na<span style="white-space:nowrap;">&#239</span>ve Bayes algorithm is the most accurate to classify agriculture datasets. OneR is the most accurate algorithm to classify instances within the health domain. The C4.5 Decision Tree algorithm is the most accurate to classify students’ records to predict degree completion time. 展开更多
关键词 Data Prediction Techniques ACCURACY Classification Algorithms Data Mining Applications
下载PDF
CeTrivium:A Stream Cipher Based on Cellular Automata for Securing Real-Time Multimedia Transmission
2
作者 Osama S.Younes abdulmohsen alharbi +3 位作者 Ali Yasseen Faisal Alshareef Faisal Albalawi Umar A.Albalawi 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2895-2920,共26页
Due to their significant correlation and redundancy,conventional block cipher cryptosystems are not efficient in encryptingmultimedia data.Streamciphers based onCellularAutomata(CA)can provide amore effective solution... Due to their significant correlation and redundancy,conventional block cipher cryptosystems are not efficient in encryptingmultimedia data.Streamciphers based onCellularAutomata(CA)can provide amore effective solution.The CA have recently gained recognition as a robust cryptographic primitive,being used as pseudorandom number generators in hash functions,block ciphers and stream ciphers.CA have the ability to perform parallel transformations,resulting in high throughput performance.Additionally,they exhibit a natural tendency to resist fault attacks.Few stream cipher schemes based on CA have been proposed in the literature.Though,their encryption/decryption throughput is relatively low,which makes them unsuitable formultimedia communication.Trivium and Grain are efficient stream ciphers that were selected as finalists in the eSTREAM project,but they have proven to be vulnerable to differential fault attacks.This work introduces a novel and scalable stream cipher named CeTrivium,whose design is based on CA.CeTrivium is a 5-neighborhood CA-based streamcipher inspired by the designs of Trivium and Grain.It is constructed using three building blocks:the Trivium(Tr)block,the Nonlinear-CA(NCA)block,and the Nonlinear Mixing(NM)block.The NCA block is a 64-bit nonlinear hybrid 5-neighborhood CA,while the Tr block has the same structure as the Trivium stream cipher.The NM block is a nonlinear,balanced,and reversible Boolean function that mixes the outputs of the Tr and NCA blocks to produce a keystream.Cryptanalysis of CeTrivium has indicated that it can resist various attacks,including correlation,algebraic,fault,cube,Meier and Staffelbach,and side channel attacks.Moreover,the scheme is evaluated using histogramand spectrogramanalysis,aswell as several differentmeasurements,including the correlation coefficient,number of samples change rate,signal-to-noise ratio,entropy,and peak signal-to-noise ratio.The performance of CeTrivium is evaluated and compared with other state-of-the-art techniques.CeTrivium outperforms them in terms of encryption throughput while maintaining high security.CeTrivium has high encryption and decryption speeds,is scalable,and resists various attacks,making it suitable for multimedia communication. 展开更多
关键词 Stream ciphers cellular automata securing real-time streaming CRYPTOGRAPHY CeTrivium
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部