Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on ...Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features.The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their characteristics.Then,two distinct kinds of features are obtained from the segmented images to help identify the objects of interest.An Artificial Neural Network(ANN)is then used to recognize the objects based on their features.Experiments were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested approach.The findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.展开更多
Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overa...Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overall accuracy.Deep learning is considered to be an efficient method for object detection in vision-based systems.In this paper,we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5(YOLOv5)detector combined with a segmentation technique.The model consists of six steps.In the first step,all the extracted traffic sequence images are subjected to pre-processing to remove noise and enhance the contrast level of the images.These pre-processed images are segmented by labelling each pixel to extract the uniform regions to aid the detection phase.A single-stage detector YOLOv5 is used to detect and locate vehicles in images.Each detection was exposed to Speeded Up Robust Feature(SURF)feature extraction to track multiple vehicles.Based on this,a unique number is assigned to each vehicle to easily locate them in the succeeding image frames by extracting them using the feature-matching technique.Further,we implemented a Kalman filter to track multiple vehicles.In the end,the vehicle path is estimated by using the centroid points of the rectangular bounding box predicted by the tracking algorithm.The experimental results and comparison reveal that our proposed vehicle detection and tracking system outperformed other state-of-the-art systems.The proposed implemented system provided 94.1%detection precision for Roundabout and 96.1%detection precision for Vehicle Aerial Imaging from Drone(VAID)datasets,respectively.展开更多
Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occ...Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occlusion,and limited labeled data.To address these challenges,we introduce a comprehensive methodology toenhance image classification and object detection accuracy.The proposed approach involves the integration ofmultiple methods in a complementary way.The process commences with the application of Gaussian filters tomitigate the impact of noise interference.These images are then processed for segmentation using Fuzzy C-Meanssegmentation in parallel with saliency mapping techniques to find the most prominent regions.The Binary RobustIndependent Elementary Features(BRIEF)characteristics are then extracted fromdata derived fromsaliency mapsand segmented images.For precise object separation,Oriented FAST and Rotated BRIEF(ORB)algorithms areemployed.Genetic Algorithms(GAs)are used to optimize Random Forest classifier parameters which lead toimproved performance.Our method stands out due to its comprehensive approach,adeptly addressing challengessuch as changing backdrops,occlusion,and limited labeled data concurrently.A significant enhancement hasbeen achieved by integrating Genetic Algorithms(GAs)to precisely optimize parameters.This minor adjustmentnot only boosts the uniqueness of our system but also amplifies its overall efficacy.The proposed methodologyhas demonstrated notable classification accuracies of 90.9%and 89.0%on the challenging Corel-1k and MSRCdatasets,respectively.Furthermore,detection accuracies of 87.2%and 86.6%have been attained.Although ourmethod performed well in both datasets it may face difficulties in real-world data especially where datasets havehighly complex backgrounds.Despite these limitations,GAintegration for parameter optimization shows a notablestrength in enhancing the overall adaptability and performance of our system.展开更多
The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes.Various technologies,such as augmented reality-driven scene integrat...The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes.Various technologies,such as augmented reality-driven scene integration,robotic navigation,autonomous driving,and guided tour systems,heavily rely on this type of scene comprehension.This paper presents a novel segmentation approach based on the UNet network model,aimed at recognizing multiple objects within an image.The methodology begins with the acquisition and preprocessing of the image,followed by segmentation using the fine-tuned UNet architecture.Afterward,we use an annotation tool to accurately label the segmented regions.Upon labeling,significant features are extracted from these segmented objects,encompassing KAZE(Accelerated Segmentation and Extraction)features,energy-based edge detection,frequency-based,and blob characteristics.For the classification stage,a convolution neural network(CNN)is employed.This comprehensive methodology demonstrates a robust framework for achieving accurate and efficient recognition of multiple objects in images.The experimental results,which include complex object datasets like MSRC-v2 and PASCAL-VOC12,have been documented.After analyzing the experimental results,it was found that the PASCAL-VOC12 dataset achieved an accuracy rate of 95%,while the MSRC-v2 dataset achieved an accuracy of 89%.The evaluation performed on these diverse datasets highlights a notably impressive level of performance.展开更多
Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precise...Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precisely.This research focuses on recognizing human interaction behaviors using a static image,which is challenging due to the complexity of diverse actions.The overall purpose of this study is to develop a robust and accurate system for human interaction recognition.This research presents a novel image-based human interaction recognition method using a Hidden Markov Model(HMM).The technique employs hue,saturation,and intensity(HSI)color transformation to enhance colors in video frames,making them more vibrant and visually appealing,especially in low-contrast or washed-out scenes.Gaussian filters reduce noise and smooth imperfections followed by silhouette extraction using a statistical method.Feature extraction uses the features from Accelerated Segment Test(FAST),Oriented FAST,and Rotated BRIEF(ORB)techniques.The application of Quadratic Discriminant Analysis(QDA)for feature fusion and discrimination enables high-dimensional data to be effectively analyzed,thus further enhancing the classification process.It ensures that the final features loaded into the HMM classifier accurately represent the relevant human activities.The impressive accuracy rates of 93%and 94.6%achieved in the BIT-Interaction and UT-Interaction datasets respectively,highlight the success and reliability of the proposed technique.The proposed approach addresses challenges in various domains by focusing on frame improvement,silhouette and feature extraction,feature fusion,and HMM classification.This enhances data quality,accuracy,adaptability,reliability,and reduction of errors.展开更多
Data protection in databases is critical for any organization,as unauthorized access or manipulation can have severe negative consequences.Intrusion detection systems are essential for keeping databases secure.Advance...Data protection in databases is critical for any organization,as unauthorized access or manipulation can have severe negative consequences.Intrusion detection systems are essential for keeping databases secure.Advancements in technology will lead to significant changes in the medical field,improving healthcare services through real-time information sharing.However,reliability and consistency still need to be solved.Safeguards against cyber-attacks are necessary due to the risk of unauthorized access to sensitive information and potential data corruption.Dis-ruptions to data items can propagate throughout the database,making it crucial to reverse fraudulent transactions without delay,especially in the healthcare industry,where real-time data access is vital.This research presents a role-based access control architecture for an anomaly detection technique.Additionally,the Structured Query Language(SQL)queries are stored in a new data structure called Pentaplet.These pentaplets allow us to maintain the correlation between SQL statements within the same transaction by employing the transaction-log entry information,thereby increasing detection accuracy,particularly for individuals within the company exhibiting unusual behavior.To identify anomalous queries,this system employs a supervised machine learning technique called Support Vector Machine(SVM).According to experimental findings,the proposed model performed well in terms of detection accuracy,achieving 99.92%through SVM with One Hot Encoding and Principal Component Analysis(PCA).展开更多
Depression is a crippling affliction and affects millions of individuals around the world.In general,the physicians screen patients for mental health disorders on a regular basis and treat patients in collaboration wi...Depression is a crippling affliction and affects millions of individuals around the world.In general,the physicians screen patients for mental health disorders on a regular basis and treat patients in collaboration with psychologists and other mental health experts,which results in lower costs and improved patient outcomes.However,this strategy can necessitate a lot of buy-in from a large number of people,as well as additional training and logistical considerations.Thus,utilizing the machine learning algorithms,patients with depression based on information generally present in a medical file were analyzed and predicted.The methodology of this proposed study is divided into six parts:Proposed Research Architecture(PRA),Data Pre-processing Approach(DPA),Research Hypothesis Testing(RHT),Concentrated Algorithm Pipeline(CAP),Loss Optimization Stratagem(LOS),and Model Deployment Architecture(MDA).The Null Hypothesis and Alternative Hypothesis are applied to test the RHT.In addition,Ensemble Learning Approach(ELA)and Frequent Model Retraining(FMR)have been utilized for optimizing the loss function.Besides,the Features Importance Interpretation is also delineated in this research.These forecasts could help individuals connect with expert mental health specialists more quickly and easily.According to the findings,71%of people with depression and 80%of those who do not have depression can be appropriately diagnosed.This study obtained 91%and 92%accuracy through the Random Forest(RF)and Extra Tree Classifier.But after applying the Receiver operating characteristic(ROC)curve,79%accuracy was found on top of RF,81%found on Extra Tree,and 82%recorded for the eXtreme Gradient Boosting(XGBoost)algorithm.Besides,several factors are identified in terms of predicting depression through statistical data analysis.Though the additional effort is needed to develop a more accurate model,this model can be adjustable in the healthcare sector for diagnosing depression.展开更多
On the edge of the worldwide public health crisis,the COVID-19 disease has become a serious headache for its destructive nature on humanity worldwide.Wearing a facial mask can be an effective possible solution to miti...On the edge of the worldwide public health crisis,the COVID-19 disease has become a serious headache for its destructive nature on humanity worldwide.Wearing a facial mask can be an effective possible solution to mitigate the spreading of the virus and reduce the death rate.Thus,wearing a face mask in public places such as shopping malls,hotels,restaurants,homes,and offices needs to be enforced.This research work comes up with a solution of mask surveillance system utilizing the mechanism of modern computations like Deep Learning(DL),Internet of things(IoT),and Blockchain.The absence or displacement of the mask will be identified with a raspberry pi,a camera module,and the operations of DL and Machine Learning(ML).The detected information will be sent to the cloud server with the mechanism of IoT for real-time data monitoring.The proposed model also includes a Blockchain-based architecture to secure the transactions of mask detection and create efficient data security,monitoring,and storage fromintruders.This research further includes an IoT-based mask detection scheme with signal bulbs,alarms,and notifications in the smartphone.To find the efficacy of the proposed method,a set of experiments has been enumerated and interpreted.This research work finds the highest accuracy of 99.95%in the detection and classification of facial masks.Some related experiments with IoT and Block-chain-based integration have also been performed and calculated the corresponding experimental data accordingly.ASystemUsability Scale(SUS)has been accomplished to check the satisfaction level of use and found the SUS score of 77%.Further,a comparison among existing solutions on three emergent technologies is included to track the significance of the proposed scheme.However,the proposed system can be an efficient mask surveillance system for COVID-19 and workable in real-time mask detection and classification.展开更多
基金supported by the MSIT(Ministry of Science and ICT)Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)+1 种基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/12/6).
文摘Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features.The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their characteristics.Then,two distinct kinds of features are obtained from the segmented images to help identify the objects of interest.An Artificial Neural Network(ANN)is then used to recognize the objects based on their features.Experiments were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested approach.The findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.
基金This researchwas supported by the Deanship of ScientificResearch at Najran University,under the Research Group Funding Program Grant Code(NU/RG/SERC/12/30)This research is supported and funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R410)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThis study is supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overall accuracy.Deep learning is considered to be an efficient method for object detection in vision-based systems.In this paper,we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5(YOLOv5)detector combined with a segmentation technique.The model consists of six steps.In the first step,all the extracted traffic sequence images are subjected to pre-processing to remove noise and enhance the contrast level of the images.These pre-processed images are segmented by labelling each pixel to extract the uniform regions to aid the detection phase.A single-stage detector YOLOv5 is used to detect and locate vehicles in images.Each detection was exposed to Speeded Up Robust Feature(SURF)feature extraction to track multiple vehicles.Based on this,a unique number is assigned to each vehicle to easily locate them in the succeeding image frames by extracting them using the feature-matching technique.Further,we implemented a Kalman filter to track multiple vehicles.In the end,the vehicle path is estimated by using the centroid points of the rectangular bounding box predicted by the tracking algorithm.The experimental results and comparison reveal that our proposed vehicle detection and tracking system outperformed other state-of-the-art systems.The proposed implemented system provided 94.1%detection precision for Roundabout and 96.1%detection precision for Vehicle Aerial Imaging from Drone(VAID)datasets,respectively.
基金a grant from the Basic Science Research Program through the National Research Foundation(NRF)(2021R1F1A1063634)funded by the Ministry of Science and ICT(MSIT)Republic of Korea.This research is supported and funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R410)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding program Grant Code(NU/RG/SERC/12/6).
文摘Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occlusion,and limited labeled data.To address these challenges,we introduce a comprehensive methodology toenhance image classification and object detection accuracy.The proposed approach involves the integration ofmultiple methods in a complementary way.The process commences with the application of Gaussian filters tomitigate the impact of noise interference.These images are then processed for segmentation using Fuzzy C-Meanssegmentation in parallel with saliency mapping techniques to find the most prominent regions.The Binary RobustIndependent Elementary Features(BRIEF)characteristics are then extracted fromdata derived fromsaliency mapsand segmented images.For precise object separation,Oriented FAST and Rotated BRIEF(ORB)algorithms areemployed.Genetic Algorithms(GAs)are used to optimize Random Forest classifier parameters which lead toimproved performance.Our method stands out due to its comprehensive approach,adeptly addressing challengessuch as changing backdrops,occlusion,and limited labeled data concurrently.A significant enhancement hasbeen achieved by integrating Genetic Algorithms(GAs)to precisely optimize parameters.This minor adjustmentnot only boosts the uniqueness of our system but also amplifies its overall efficacy.The proposed methodologyhas demonstrated notable classification accuracies of 90.9%and 89.0%on the challenging Corel-1k and MSRCdatasets,respectively.Furthermore,detection accuracies of 87.2%and 86.6%have been attained.Although ourmethod performed well in both datasets it may face difficulties in real-world data especially where datasets havehighly complex backgrounds.Despite these limitations,GAintegration for parameter optimization shows a notablestrength in enhancing the overall adaptability and performance of our system.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)Program(IITP-2024-RS-2022-00156326)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)+2 种基金The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/GP/SERC/13/30)funding for this work was provided by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R410)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the Project Number“NBU-FFR-2024-231-06”.
文摘The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes.Various technologies,such as augmented reality-driven scene integration,robotic navigation,autonomous driving,and guided tour systems,heavily rely on this type of scene comprehension.This paper presents a novel segmentation approach based on the UNet network model,aimed at recognizing multiple objects within an image.The methodology begins with the acquisition and preprocessing of the image,followed by segmentation using the fine-tuned UNet architecture.Afterward,we use an annotation tool to accurately label the segmented regions.Upon labeling,significant features are extracted from these segmented objects,encompassing KAZE(Accelerated Segmentation and Extraction)features,energy-based edge detection,frequency-based,and blob characteristics.For the classification stage,a convolution neural network(CNN)is employed.This comprehensive methodology demonstrates a robust framework for achieving accurate and efficient recognition of multiple objects in images.The experimental results,which include complex object datasets like MSRC-v2 and PASCAL-VOC12,have been documented.After analyzing the experimental results,it was found that the PASCAL-VOC12 dataset achieved an accuracy rate of 95%,while the MSRC-v2 dataset achieved an accuracy of 89%.The evaluation performed on these diverse datasets highlights a notably impressive level of performance.
基金funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/12/6)supported via funding from Prince Satam bin Abdulaziz University Project Number(PSAU/2023/R/1444)+1 种基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R348)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,and this work was also supported by the Ministry of Science and ICT(MSIT),South Korea,through the ICT Creative Consilience Program supervised by the Institute for Information and Communications Technology Planning and Evaluation(IITP)under Grant IITP-2023-2020-0-01821.
文摘Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precisely.This research focuses on recognizing human interaction behaviors using a static image,which is challenging due to the complexity of diverse actions.The overall purpose of this study is to develop a robust and accurate system for human interaction recognition.This research presents a novel image-based human interaction recognition method using a Hidden Markov Model(HMM).The technique employs hue,saturation,and intensity(HSI)color transformation to enhance colors in video frames,making them more vibrant and visually appealing,especially in low-contrast or washed-out scenes.Gaussian filters reduce noise and smooth imperfections followed by silhouette extraction using a statistical method.Feature extraction uses the features from Accelerated Segment Test(FAST),Oriented FAST,and Rotated BRIEF(ORB)techniques.The application of Quadratic Discriminant Analysis(QDA)for feature fusion and discrimination enables high-dimensional data to be effectively analyzed,thus further enhancing the classification process.It ensures that the final features loaded into the HMM classifier accurately represent the relevant human activities.The impressive accuracy rates of 93%and 94.6%achieved in the BIT-Interaction and UT-Interaction datasets respectively,highlight the success and reliability of the proposed technique.The proposed approach addresses challenges in various domains by focusing on frame improvement,silhouette and feature extraction,feature fusion,and HMM classification.This enhances data quality,accuracy,adaptability,reliability,and reduction of errors.
基金thankful to the Dean of Scientific Research at Najran University for funding this work under the Research Groups Funding Program,Grant Code(NU/RG/SERC/12/6).
文摘Data protection in databases is critical for any organization,as unauthorized access or manipulation can have severe negative consequences.Intrusion detection systems are essential for keeping databases secure.Advancements in technology will lead to significant changes in the medical field,improving healthcare services through real-time information sharing.However,reliability and consistency still need to be solved.Safeguards against cyber-attacks are necessary due to the risk of unauthorized access to sensitive information and potential data corruption.Dis-ruptions to data items can propagate throughout the database,making it crucial to reverse fraudulent transactions without delay,especially in the healthcare industry,where real-time data access is vital.This research presents a role-based access control architecture for an anomaly detection technique.Additionally,the Structured Query Language(SQL)queries are stored in a new data structure called Pentaplet.These pentaplets allow us to maintain the correlation between SQL statements within the same transaction by employing the transaction-log entry information,thereby increasing detection accuracy,particularly for individuals within the company exhibiting unusual behavior.To identify anomalous queries,this system employs a supervised machine learning technique called Support Vector Machine(SVM).According to experimental findings,the proposed model performed well in terms of detection accuracy,achieving 99.92%through SVM with One Hot Encoding and Principal Component Analysis(PCA).
文摘Depression is a crippling affliction and affects millions of individuals around the world.In general,the physicians screen patients for mental health disorders on a regular basis and treat patients in collaboration with psychologists and other mental health experts,which results in lower costs and improved patient outcomes.However,this strategy can necessitate a lot of buy-in from a large number of people,as well as additional training and logistical considerations.Thus,utilizing the machine learning algorithms,patients with depression based on information generally present in a medical file were analyzed and predicted.The methodology of this proposed study is divided into six parts:Proposed Research Architecture(PRA),Data Pre-processing Approach(DPA),Research Hypothesis Testing(RHT),Concentrated Algorithm Pipeline(CAP),Loss Optimization Stratagem(LOS),and Model Deployment Architecture(MDA).The Null Hypothesis and Alternative Hypothesis are applied to test the RHT.In addition,Ensemble Learning Approach(ELA)and Frequent Model Retraining(FMR)have been utilized for optimizing the loss function.Besides,the Features Importance Interpretation is also delineated in this research.These forecasts could help individuals connect with expert mental health specialists more quickly and easily.According to the findings,71%of people with depression and 80%of those who do not have depression can be appropriately diagnosed.This study obtained 91%and 92%accuracy through the Random Forest(RF)and Extra Tree Classifier.But after applying the Receiver operating characteristic(ROC)curve,79%accuracy was found on top of RF,81%found on Extra Tree,and 82%recorded for the eXtreme Gradient Boosting(XGBoost)algorithm.Besides,several factors are identified in terms of predicting depression through statistical data analysis.Though the additional effort is needed to develop a more accurate model,this model can be adjustable in the healthcare sector for diagnosing depression.
文摘On the edge of the worldwide public health crisis,the COVID-19 disease has become a serious headache for its destructive nature on humanity worldwide.Wearing a facial mask can be an effective possible solution to mitigate the spreading of the virus and reduce the death rate.Thus,wearing a face mask in public places such as shopping malls,hotels,restaurants,homes,and offices needs to be enforced.This research work comes up with a solution of mask surveillance system utilizing the mechanism of modern computations like Deep Learning(DL),Internet of things(IoT),and Blockchain.The absence or displacement of the mask will be identified with a raspberry pi,a camera module,and the operations of DL and Machine Learning(ML).The detected information will be sent to the cloud server with the mechanism of IoT for real-time data monitoring.The proposed model also includes a Blockchain-based architecture to secure the transactions of mask detection and create efficient data security,monitoring,and storage fromintruders.This research further includes an IoT-based mask detection scheme with signal bulbs,alarms,and notifications in the smartphone.To find the efficacy of the proposed method,a set of experiments has been enumerated and interpreted.This research work finds the highest accuracy of 99.95%in the detection and classification of facial masks.Some related experiments with IoT and Block-chain-based integration have also been performed and calculated the corresponding experimental data accordingly.ASystemUsability Scale(SUS)has been accomplished to check the satisfaction level of use and found the SUS score of 77%.Further,a comparison among existing solutions on three emergent technologies is included to track the significance of the proposed scheme.However,the proposed system can be an efficient mask surveillance system for COVID-19 and workable in real-time mask detection and classification.