Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical ...Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order. A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. Using the approximate method, the expressions for the velocity microrotation, temperature, and concentration are obtained. Futher, the results of the skin friction coefficient, the couple stress coefficient, and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.展开更多
The laminar fully developed free-convection flow in a channel bounded by two vertical plates, partially filled with porous matrix and partially with a clear fluid, has been discussed when both the plates are moving in...The laminar fully developed free-convection flow in a channel bounded by two vertical plates, partially filled with porous matrix and partially with a clear fluid, has been discussed when both the plates are moving in opposite direction. Two regions are coupled, by equating the velocity and shear stress at the interface. The momentum transfer in porous medium has been described by the Brinkman-extended Darcy model. The affect of Darcy number on flow velocity has been discussed in fluid region, interface region and porous medium with the help of graphs. Analytic method has been adopted to obtain the expressions of velocity and temperature. The skin-friction component has also been determined and presented with the help of tables.展开更多
The present paper, a theoretical analysis of steady fully developed flow and heat transfer of two immiscible magneto hydrodynamic and viscous fluid, partially filled with porous matrix and partially with clear fluid b...The present paper, a theoretical analysis of steady fully developed flow and heat transfer of two immiscible magneto hydrodynamic and viscous fluid, partially filled with porous matrix and partially with clear fluid bounded by two vertical plates, has been discussed, when both the plates are moving in opposite directions. The plates are maintained at unequal temperatures. The Brink-man-extended Darcy model has described the momentum transfer in a porous medium. The effect of various parameters and Darcy number are discussed in the flow field and the temperature profiles numerically and are expressed by graphs. The non-dimensional governing momentum and energy equations are analytically solved by applying the homotopy perturbation technique and the method of ordinary differential equation. It is observed that magnetic parameter (M) has a retarding effect on the main flow velocity and is to enhance the temperature distribution, whereas the reversal phenomenon occurs for the Darcy dissipation parameter (Da). The skin-friction component has also been determined and is presented with the help of a table. The magnetic parameter (M) reduces the skin friction coefficient for clear fluid region and is to increase the skin friction coefficient for porous region. It is also evident from table that getting bigger the width of the clear fluid layer increases the skin friction. The skin friction coefficient on both the plates (comparing at y = 0 and at y = 1 for A or B) increases when those are heated.展开更多
This paper examined the hydromagnetic boundary layer flow of viscoelastic fluid with heat and mass transfer in a vertical channel with rotation and Hall current. A constant suction and injection is applied to the plat...This paper examined the hydromagnetic boundary layer flow of viscoelastic fluid with heat and mass transfer in a vertical channel with rotation and Hall current. A constant suction and injection is applied to the plates. A strong magnetic field is applied in the direction normal to the plates. The entire system rotates with uniform angular velocity (Ω), about the axis perpendicular to the plates. The governing equations are solved by perturbation technique to obtain an analytical result for velocity, temperature, concentration distributions and results are presented graphically for various values of viscoelastic parameter (K2), Prandtl number (Pr), Schmidt number (Sc), radiation parameter (R), heat generation parameter (Qh) and Hall parameter (m).展开更多
文摘Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order. A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. Using the approximate method, the expressions for the velocity microrotation, temperature, and concentration are obtained. Futher, the results of the skin friction coefficient, the couple stress coefficient, and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.
文摘The laminar fully developed free-convection flow in a channel bounded by two vertical plates, partially filled with porous matrix and partially with a clear fluid, has been discussed when both the plates are moving in opposite direction. Two regions are coupled, by equating the velocity and shear stress at the interface. The momentum transfer in porous medium has been described by the Brinkman-extended Darcy model. The affect of Darcy number on flow velocity has been discussed in fluid region, interface region and porous medium with the help of graphs. Analytic method has been adopted to obtain the expressions of velocity and temperature. The skin-friction component has also been determined and presented with the help of tables.
文摘The present paper, a theoretical analysis of steady fully developed flow and heat transfer of two immiscible magneto hydrodynamic and viscous fluid, partially filled with porous matrix and partially with clear fluid bounded by two vertical plates, has been discussed, when both the plates are moving in opposite directions. The plates are maintained at unequal temperatures. The Brink-man-extended Darcy model has described the momentum transfer in a porous medium. The effect of various parameters and Darcy number are discussed in the flow field and the temperature profiles numerically and are expressed by graphs. The non-dimensional governing momentum and energy equations are analytically solved by applying the homotopy perturbation technique and the method of ordinary differential equation. It is observed that magnetic parameter (M) has a retarding effect on the main flow velocity and is to enhance the temperature distribution, whereas the reversal phenomenon occurs for the Darcy dissipation parameter (Da). The skin-friction component has also been determined and is presented with the help of a table. The magnetic parameter (M) reduces the skin friction coefficient for clear fluid region and is to increase the skin friction coefficient for porous region. It is also evident from table that getting bigger the width of the clear fluid layer increases the skin friction. The skin friction coefficient on both the plates (comparing at y = 0 and at y = 1 for A or B) increases when those are heated.
文摘This paper examined the hydromagnetic boundary layer flow of viscoelastic fluid with heat and mass transfer in a vertical channel with rotation and Hall current. A constant suction and injection is applied to the plates. A strong magnetic field is applied in the direction normal to the plates. The entire system rotates with uniform angular velocity (Ω), about the axis perpendicular to the plates. The governing equations are solved by perturbation technique to obtain an analytical result for velocity, temperature, concentration distributions and results are presented graphically for various values of viscoelastic parameter (K2), Prandtl number (Pr), Schmidt number (Sc), radiation parameter (R), heat generation parameter (Qh) and Hall parameter (m).