In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, ...In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.展开更多
Improvements of wear and corrosion properties are essential characteristic in engineering application. A study was made on the structure, electro-oxidation and properties of fabricated Zn-Al-SnO 2-Ti O2(Zn-Al-Sn-Ti)...Improvements of wear and corrosion properties are essential characteristic in engineering application. A study was made on the structure, electro-oxidation and properties of fabricated Zn-Al-SnO 2-Ti O2(Zn-Al-Sn-Ti) thin films using electrodeposition technique from chloride bath. The microstructural studies were performed by scanning electron microscopy with attached energy dispersive spectrometer(SEM-EDS), optical microscopy(OPM) and X-ray diffractogram(XRD). The electrochemical oxidation and erosion behavior in 3.65% Na Cl medium were studied by potentiodynamic polarization technique and characterized by atomic force microscopy(AFM). The hardness and wear behavior of the electrodeposited film were performed by high diamond dura scan microhardness tester and CERT UMT-2 reciprocating sliding machine. It was found that a successful co-deposition of composite and particle were attained. Homogeneous imbedded grain structure distribution and fine refinement of crystal with improved micromechanical behavior was achieved. The corrosion resistance, hardness and wear stability resistance of the fabricated quaternary films improved significantly in all varied process parameter.展开更多
Zn-SnO2 composite coatings were prepared by direct potential using electrolytic co-deposition technique from sulfate solution. The effect of Zn2+ and SnO2 concentrations in deposited bath on the mechanical properties...Zn-SnO2 composite coatings were prepared by direct potential using electrolytic co-deposition technique from sulfate solution. The effect of Zn2+ and SnO2 concentrations in deposited bath on the mechanical properties and mor- phological characteristics of the composite coatings were examined. The characterizations of the sample were analyzed using scanning electron microscopy couple with energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD) and atomic force microscopy (AFM). The electrochemical degradation behavior of the samples in 3.65 wt.% NaCl solution was studied using potentiodynamic polarization technique and characterized by high-resolution optical microscope. From all the fabricated composite coatings, obvious diffraction peaks were observed with Zn-7Sn-S-0.3V film with Zn2Sn7, Sn, Zn2Sn5 and Zn phases, confirming the presence and formation of Zn-SnO2 coating. The XRD pattern shows that the presences of SnO2 particle remarkably play a major role in the precipitation and orientation of the alloy matrix. From the SEM/EDS and AFM results, the deposits show that composite particle and proper bath composition have strong influence on the microstructure. An enhanced corrosion resistance was attained as a result of the induced particles.展开更多
文摘In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.
基金supported financially by the National Research Foundationsupported by Surface Engineering Research Centre (SERC),Tshwane University of Technology
文摘Improvements of wear and corrosion properties are essential characteristic in engineering application. A study was made on the structure, electro-oxidation and properties of fabricated Zn-Al-SnO 2-Ti O2(Zn-Al-Sn-Ti) thin films using electrodeposition technique from chloride bath. The microstructural studies were performed by scanning electron microscopy with attached energy dispersive spectrometer(SEM-EDS), optical microscopy(OPM) and X-ray diffractogram(XRD). The electrochemical oxidation and erosion behavior in 3.65% Na Cl medium were studied by potentiodynamic polarization technique and characterized by atomic force microscopy(AFM). The hardness and wear behavior of the electrodeposited film were performed by high diamond dura scan microhardness tester and CERT UMT-2 reciprocating sliding machine. It was found that a successful co-deposition of composite and particle were attained. Homogeneous imbedded grain structure distribution and fine refinement of crystal with improved micromechanical behavior was achieved. The corrosion resistance, hardness and wear stability resistance of the fabricated quaternary films improved significantly in all varied process parameter.
基金supported financially by National Research Foundation and Surface Engineering Research Centre,Tshwane University of Technology,Pretoria,South Africa
文摘Zn-SnO2 composite coatings were prepared by direct potential using electrolytic co-deposition technique from sulfate solution. The effect of Zn2+ and SnO2 concentrations in deposited bath on the mechanical properties and mor- phological characteristics of the composite coatings were examined. The characterizations of the sample were analyzed using scanning electron microscopy couple with energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD) and atomic force microscopy (AFM). The electrochemical degradation behavior of the samples in 3.65 wt.% NaCl solution was studied using potentiodynamic polarization technique and characterized by high-resolution optical microscope. From all the fabricated composite coatings, obvious diffraction peaks were observed with Zn-7Sn-S-0.3V film with Zn2Sn7, Sn, Zn2Sn5 and Zn phases, confirming the presence and formation of Zn-SnO2 coating. The XRD pattern shows that the presences of SnO2 particle remarkably play a major role in the precipitation and orientation of the alloy matrix. From the SEM/EDS and AFM results, the deposits show that composite particle and proper bath composition have strong influence on the microstructure. An enhanced corrosion resistance was attained as a result of the induced particles.