期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Protein Phosphorylation and Phosphoproteome:An Overview of Rice 被引量:5
1
作者 abolore adijat ajadi Amara CISSE +8 位作者 Shakeel AHMAD WANG Yifeng SHU Yazhou LI Shufan LIU Xixi Babatunde Kazeem BELLO Sani Muhammad TAJO TONG Xiaohong ZHANG Jian 《Rice science》 SCIE CSCD 2020年第3期184-200,共17页
Protein phosphorylation,one of the major post-translational modifications,plays a crucial role in cell signaling,DNA replication,gene expression and differentiation;and alters enzyme activity and other biological acti... Protein phosphorylation,one of the major post-translational modifications,plays a crucial role in cell signaling,DNA replication,gene expression and differentiation;and alters enzyme activity and other biological activities;and regulates cell proliferation and enlargement,phytohormone biosynthesis and signaling,plant disease resistance,and grain filling and quality during rice seed development.Research work on protein phosphorylation started in the 1950 s with the discovery of phosphorylase a and phosphorylase b which are phospho and dephospho forms of the same enzyme.Over the last decade,rice proteomics has accomplished tremendous progress in setting up techniques to proteome nearly all tissues,organs and organelles.The progress made in this field is evident in number of research works.However,research on rice protein phosphorylation is still at its infancy and there are still many unanswered questions.In this review,the general description of protein phosphorylation,including history,structure,frequency of occurrence and function,are discussed.This work also elucidates the different methods for identification,qualification and finally,the progress in rice phosphoproteome research and perspectives. 展开更多
关键词 PHOSPHOPROTEOME PROTEIN PHOSPHORYLATION POST-TRANSLATIONAL MODIFICATION RICE
下载PDF
WRKY72 Negatively Regulates Seed Germination Through Interfering Gibberellin Pathway in Rice 被引量:3
2
作者 Wang Huimei Hou Yuxuan +5 位作者 Wang Shuang Tong Xiaohong Tang Liqun abolore adijat ajadi Zhang Jian Wang Yifeng 《Rice science》 SCIE CSCD 2021年第1期1-5,共5页
Seed germination is associated with grain yield and quality in crop production.Gibberellic acid(GA)serves as a major phytohormone in the promotion of seed germination.It is synthesized in the embryos and transmitted t... Seed germination is associated with grain yield and quality in crop production.Gibberellic acid(GA)serves as a major phytohormone in the promotion of seed germination.It is synthesized in the embryos and transmitted to the aleurone layers,where GA triggers the synthesis and secretion of a set of hydrolases,especiallyα-amylase.Subsequently,the storage nutrients such as starch in the endosperm are digested by these hydrolases and absorbed by the embryo to sustain seed germination and early seedling establishment(Kaneko et al,2002).The detailed GA biosynthesis process has been well studied and thoroughly reviewed in several literatures(Sakamoto et al,2004;Reinecke et al,2013).Briefly,geranylgeranyl diphosphate(GGDP)is turned into ent-kaurene by two terpene synthases,ent-copalyl diphosphate synthase(CPS)and ent-kaurene synthase(KS).Subsequently,the conversion of GA precursor ent-kaurene to ent-kaurenoic acid is catalyzed by ent-kaurene oxidase(KO),and that from ent-kaurenoic acid to GA12 is catalyzed by ent-kaurenoic acid oxidase(KAO).Ultimately,GA12 is converted to various GA intermediates and bioactive GAs by GA20-oxidase(GA20ox)and GA3-oxidase(GA3ox),respectively. 展开更多
关键词 CATALYZED thoroughly converted
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部