期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用柔性神经树的实时肌电信号手势识别模型 被引量:2
1
作者 郭一娜 王清华 abraham ajith 《计算机工程与应用》 CSCD 2012年第17期207-210,228,共5页
传统的手势识别通常采用数字信号处理(Digital Signal Processing,DSP)芯片或者集合方法(Ensem-ble Methods)研究实时识别问题。这些方法易导致数学模型参数繁多、硬件连接复杂和实时识别率较低。提出一种基于表面肌电信号与柔性神经树(... 传统的手势识别通常采用数字信号处理(Digital Signal Processing,DSP)芯片或者集合方法(Ensem-ble Methods)研究实时识别问题。这些方法易导致数学模型参数繁多、硬件连接复杂和实时识别率较低。提出一种基于表面肌电信号与柔性神经树(Flexible Neural Trees,FNT)模型的实时手势识别模型。表面肌电信号(surface Electromyography,sEMG)具有非入侵式、易于采集特点,故被广泛应用于行为识别和诊断等领域。柔性神经树模型通过简单的预定义来构建,能够解决人工神经网络(Artificial Neural Network,ANN)的结构依赖性高的问题。柔性神经树模型不仅能够避免复杂的计算和电路连接,还具有较高的实时识别率和较低的方均根误差(Root Mean Square Error,RMSE)。实验针对六名参与者的六种手势进行测试,结果表明该模型实时识别率较高,实际应用也证明该算法可行。 展开更多
关键词 实时识别 表面肌电信号 柔性神经树 均方根 方均根误差
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部