Host plant nutritional quality can directly and indirectly affect the third trophic levels. The aphid-parasitoid relationship provides an ideal system to investigate tritrophic interactions (as the parasitoids are co...Host plant nutritional quality can directly and indirectly affect the third trophic levels. The aphid-parasitoid relationship provides an ideal system to investigate tritrophic interactions (as the parasitoids are completely dependent for their development upon their hosts) and assess the bottom up forces operating at different concentrations of nitrogen applications. The effects of varying nitrogen fertilizer on the performance of Aphidius colemani (V.) reared on Sitobion avenae (E) and Aphidius rhopalosiphi (D.) reared on Rhopalosiphum padi (L.) were measured. Parasitism and percent emergence ofparasitoids were positively affected by nitrogen fertilizer treatments while developmental duration (egg, larval, and pupal stages) was not affected by increasing nitrogen inputs. In males and females of both parasitoid species, adult longevity increased with the increasing nitrogen fertilizer. Hind tibia length and mummy weight of both parasitoid species increased with nitrogen fertilizer concentrations, as a result of larger aphids. This study showed that nitrogen application to the soil can have important consequences for aboveground multitrophic interactions.展开更多
Plant quality can directly and indirectly affect the third trophic level. The predation by all the instars of green lacewing, Chrysoperla carnea (S.) (Neuroptera: Chrysopidae) on the cereal aphids, Rhopalosiphum ...Plant quality can directly and indirectly affect the third trophic level. The predation by all the instars of green lacewing, Chrysoperla carnea (S.) (Neuroptera: Chrysopidae) on the cereal aphids, Rhopalosiphum padi (L.), and Sitobion avenae (F.) at varying nitrogen fertilizer levels was calculated under laboratory conditions. Wheat plants were grown on four nitrogen fertilizer levels and aphids were fed on these plants and subsequently offered as food to the C. carnea. Aphid densities of 10, 30, and 90 were offered to first, second, and third instar larvae of green lacewing. Increased nitrogen application improved nitrogen contents of the plants and also the body weight of cereal aphids feeding on them. Aphid consumption by green lacewings was reduced with the increase in nitrogen content in the host plants of aphids. Predation of both aphid species by first, second, and third instars larvae of C. carnea was highest on aphids reared on plants with the lowest rate of fertilization, suggesting a compensatory consumption to overcome reduced biomass (lower aphid size). Total biomass devoured by C. carnea on all nitrogen fertilizer treatments was not statistically different. Additionally, the heavier host prey influenced by the plant nutrition had an effect on the life history characteristics of green lacewings. The larval duration, pupal weight, pupal duration, fecundity, and male and female longevity were significantly affected by the level of nitrogen fertilization to the aphid's host plants, except for pupal duration when fed on S. avenae. This study showed that quantity of prey supplied to the larvae affects the prey consumption and thereafter the life history characteristics of green lacewings.展开更多
文摘Host plant nutritional quality can directly and indirectly affect the third trophic levels. The aphid-parasitoid relationship provides an ideal system to investigate tritrophic interactions (as the parasitoids are completely dependent for their development upon their hosts) and assess the bottom up forces operating at different concentrations of nitrogen applications. The effects of varying nitrogen fertilizer on the performance of Aphidius colemani (V.) reared on Sitobion avenae (E) and Aphidius rhopalosiphi (D.) reared on Rhopalosiphum padi (L.) were measured. Parasitism and percent emergence ofparasitoids were positively affected by nitrogen fertilizer treatments while developmental duration (egg, larval, and pupal stages) was not affected by increasing nitrogen inputs. In males and females of both parasitoid species, adult longevity increased with the increasing nitrogen fertilizer. Hind tibia length and mummy weight of both parasitoid species increased with nitrogen fertilizer concentrations, as a result of larger aphids. This study showed that nitrogen application to the soil can have important consequences for aboveground multitrophic interactions.
文摘Plant quality can directly and indirectly affect the third trophic level. The predation by all the instars of green lacewing, Chrysoperla carnea (S.) (Neuroptera: Chrysopidae) on the cereal aphids, Rhopalosiphum padi (L.), and Sitobion avenae (F.) at varying nitrogen fertilizer levels was calculated under laboratory conditions. Wheat plants were grown on four nitrogen fertilizer levels and aphids were fed on these plants and subsequently offered as food to the C. carnea. Aphid densities of 10, 30, and 90 were offered to first, second, and third instar larvae of green lacewing. Increased nitrogen application improved nitrogen contents of the plants and also the body weight of cereal aphids feeding on them. Aphid consumption by green lacewings was reduced with the increase in nitrogen content in the host plants of aphids. Predation of both aphid species by first, second, and third instars larvae of C. carnea was highest on aphids reared on plants with the lowest rate of fertilization, suggesting a compensatory consumption to overcome reduced biomass (lower aphid size). Total biomass devoured by C. carnea on all nitrogen fertilizer treatments was not statistically different. Additionally, the heavier host prey influenced by the plant nutrition had an effect on the life history characteristics of green lacewings. The larval duration, pupal weight, pupal duration, fecundity, and male and female longevity were significantly affected by the level of nitrogen fertilization to the aphid's host plants, except for pupal duration when fed on S. avenae. This study showed that quantity of prey supplied to the larvae affects the prey consumption and thereafter the life history characteristics of green lacewings.