Unlike the traditional Laplace transform, the Sumudu transform of a function, when approximated as a power series, may be readily inverted using factorial-based coefficient diminution. This technique offers straightfo...Unlike the traditional Laplace transform, the Sumudu transform of a function, when approximated as a power series, may be readily inverted using factorial-based coefficient diminution. This technique offers straightforward computational advantages for approximate range-limited numerical solutions of certain ordinary, mixed, and partial linear differential and integro-differential equations. Furthermore, discrete convolution (the Cauchy product), may also be utilized to assist in this approximate inversion method of the Sumudu transform. Illustrative examples are provided which elucidate both the applicability and limitations of this method.展开更多
文摘Unlike the traditional Laplace transform, the Sumudu transform of a function, when approximated as a power series, may be readily inverted using factorial-based coefficient diminution. This technique offers straightforward computational advantages for approximate range-limited numerical solutions of certain ordinary, mixed, and partial linear differential and integro-differential equations. Furthermore, discrete convolution (the Cauchy product), may also be utilized to assist in this approximate inversion method of the Sumudu transform. Illustrative examples are provided which elucidate both the applicability and limitations of this method.