In this paper</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span&g...In this paper</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a literature review on thermocline storage performance fo</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">r Concentrating Solar Power (CSP) plant storage systems ha</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been conducted. The efficiency of materials to store heat depend</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> on the storage process like sensible heat storage, latent heat storage and thermochemical one and also on their properties. This study has been focused on sensible heat storage materials especially thermocline storage system (DMT) using eco-materials which has a high potentiality (35%) to reduce CSP cost. There is a possibility to use natural rocks, industry waste and to develop also materials for a thermocline storage within a bed called packed bed using one tank. The thermal storage materials should have some optimum parameters (particle diameter less than 2 </span><span style="font-family:Verdana;">cm and good thermo-physical properties) to achieve better thermal storage performance (thermal cycle efficiency, extraction factor). However, the size and the shape of natural rocks are uncontrollable (big diameter) and can </span><span style="font-family:Verdana;">drive to thermocline degradation, catastrophic thermal ratcheting and poor thermal stratification due to the variability of the storage system porosity and the stress on the storage tank wall. Also a better thermal storage efficiency is achievable at low velocity and with good thermo-physical properties of the HTF. The ratio H/D, the height, the porosity, the shape and the position of the tank should be optimized to increase the storage efficiency.展开更多
In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal ...In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000°C and 1060°C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610°C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ·m-3·°C-1 to 3.426 MJ·m-3·°C-1 and their thermal conductivity from 0.331 Wm-1·K-1, to 1.014 Wm-1·K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer.展开更多
文摘In this paper</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a literature review on thermocline storage performance fo</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">r Concentrating Solar Power (CSP) plant storage systems ha</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been conducted. The efficiency of materials to store heat depend</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> on the storage process like sensible heat storage, latent heat storage and thermochemical one and also on their properties. This study has been focused on sensible heat storage materials especially thermocline storage system (DMT) using eco-materials which has a high potentiality (35%) to reduce CSP cost. There is a possibility to use natural rocks, industry waste and to develop also materials for a thermocline storage within a bed called packed bed using one tank. The thermal storage materials should have some optimum parameters (particle diameter less than 2 </span><span style="font-family:Verdana;">cm and good thermo-physical properties) to achieve better thermal storage performance (thermal cycle efficiency, extraction factor). However, the size and the shape of natural rocks are uncontrollable (big diameter) and can </span><span style="font-family:Verdana;">drive to thermocline degradation, catastrophic thermal ratcheting and poor thermal stratification due to the variability of the storage system porosity and the stress on the storage tank wall. Also a better thermal storage efficiency is achievable at low velocity and with good thermo-physical properties of the HTF. The ratio H/D, the height, the porosity, the shape and the position of the tank should be optimized to increase the storage efficiency.
文摘In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000°C and 1060°C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610°C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ·m-3·°C-1 to 3.426 MJ·m-3·°C-1 and their thermal conductivity from 0.331 Wm-1·K-1, to 1.014 Wm-1·K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer.