The Cheria region in Northeastern Algeria has been facing aquifer overexploitation by the agricultural sector and prolonged droughts,resulting in a considerable decline in groundwater levels.This study investigates th...The Cheria region in Northeastern Algeria has been facing aquifer overexploitation by the agricultural sector and prolonged droughts,resulting in a considerable decline in groundwater levels.This study investigates the feasibility of implementing artificial recharge techniques to replenish the Eocene aquifer which serves as the primary water source in the Cheria region.A 3D transient numerical model,based on the finite difference method,was used to simulate groundwater flow from 2021 to 2031 using Visual MODFLOW Flex.During the modelling process,three scenarios were considered:(1)including pumping without a recharge,(2)recharge of the entire area through efficient infiltration without pumping,and(3)artificial recharge using river water infiltration basins at two sites,Draa Douamis sinkholes and Eocene limestone outcrops.The simulation results showed that aquifer exploitation without recharge caused significant drawdowns,which were 3 m to 7 m in the north-eastern part and 8 m to 12 m in the central and southern parts.In contrast,the second scenario,involving recharge without pumping,showed a rise in groundwater levels of 2 m to 2.7 m in the north-eastern part and 3 m to 3.62 m in the central and southern parts.The third scenario,employing artificial recharge,indicated a positive response to artificial recharge,with increased piezometric levels at the proposed sites,signifying a beneficial impact on the aquifer.These findings underline the potential of artificial recharge as a promising approach to address the groundwater depletion and environmental issues in the Cheria Basin.展开更多
文摘The Cheria region in Northeastern Algeria has been facing aquifer overexploitation by the agricultural sector and prolonged droughts,resulting in a considerable decline in groundwater levels.This study investigates the feasibility of implementing artificial recharge techniques to replenish the Eocene aquifer which serves as the primary water source in the Cheria region.A 3D transient numerical model,based on the finite difference method,was used to simulate groundwater flow from 2021 to 2031 using Visual MODFLOW Flex.During the modelling process,three scenarios were considered:(1)including pumping without a recharge,(2)recharge of the entire area through efficient infiltration without pumping,and(3)artificial recharge using river water infiltration basins at two sites,Draa Douamis sinkholes and Eocene limestone outcrops.The simulation results showed that aquifer exploitation without recharge caused significant drawdowns,which were 3 m to 7 m in the north-eastern part and 8 m to 12 m in the central and southern parts.In contrast,the second scenario,involving recharge without pumping,showed a rise in groundwater levels of 2 m to 2.7 m in the north-eastern part and 3 m to 3.62 m in the central and southern parts.The third scenario,employing artificial recharge,indicated a positive response to artificial recharge,with increased piezometric levels at the proposed sites,signifying a beneficial impact on the aquifer.These findings underline the potential of artificial recharge as a promising approach to address the groundwater depletion and environmental issues in the Cheria Basin.