期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gravity-Driven Listric Growth Fault and Sedimentation in the Lagoa do Peixe, Rio Grande do Sul Coastal Plain, Brazil
1
作者 Bruno Silva da Fontoura adelir josé strieder +1 位作者 Iran Carlos Stalliviere Corrêa Paulo Rogério Mendes 《Open Journal of Geology》 CAS 2024年第4期594-616,共23页
High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However,... High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However, low frequency GPR surveys to investigate fault-related depositional systems at greater depths are scarce. This survey was designed investigate a > 100 km long linear escarpment that controls the northwest margin of the Lagoa do Peixe, an important lagoon in Rio Grande do Sul Coastal Plain (RGSCP, Brazil). The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;no deformational structure is admitted to exist before. The low frequency GPR (50 MHz, RTA antenna) and geological surveys carried out in the RGSCP showed the existence of a large, gravity-driven listric growth fault controlling the Lagoa do Peixe escarpment and hangingwall sedimentation. The radargrams in four subareas along the Lagoa do Peixe Growth Fault could be interpreted following the seismic expression of rift-related depositional systems. The radargrams enabled to distinguish three main lagoonal deposition radarfacies. The lower lagoonal radarfacies is a convex upward unit, thicker close to growth fault;the radarfacies geometry indicates that fault displacement rate surpasses the sedimentation rate, and its upper stratum is aged ~3500 <sup>l4</sup>C years BP. The second lagoonal radarfacies is a triangular wedge restricted to the lagoon depocenter, whose geometry indicates that fault displacement and the sedimentation rates kept pace. The upper lagoonal radarfacies is being deposited since 1060 ± 70 <sup>l4</sup>C years BP, under sedimentation rate higher than fault displacement rate. The results indicate that low frequency GPR surveys can help in investigating fault-related depositional systems in coastal zones. They also point to a new approach in dealing with RGSCP stratigraphy. 展开更多
关键词 GPR (Ground-Penetrating Radar) Growth Fault SEDIMENTATION Radarfacies Coastal Plain
下载PDF
Gravity Fault Subsidence and Beach Ridges Progradation in Quinta-Cassino (RS) Coastal Plain, Brazil
2
作者 Bruno Silva da Fontoura adelir josé strieder +3 位作者 Iran Carlos Stalliviere Corrêa Paulo Rogério Mendes Alexandre Felipe Bruch Angélica Cirolini 《Open Journal of Geology》 CAS 2024年第2期177-195,共19页
Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, howeve... Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution. 展开更多
关键词 Gravity Tectonics Normal Faults Ground Penetrating Radar Survey Beach-Ridges Progradation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部