The rapid increase in the use of plastic materials in the recent years led to the accumulation of excessive amounts of plastic waste. The so-called thermoplastics such as PE, PP, PS, PVC and PET as well as materials t...The rapid increase in the use of plastic materials in the recent years led to the accumulation of excessive amounts of plastic waste. The so-called thermoplastics such as PE, PP, PS, PVC and PET as well as materials that are derived from these are the type of plastic that is most used and consequently creates most of the waste. In this study, the original and waste forms of PE and PP plastic types have been chosen for thermal and catalytic degradation. As process parameter, 410oC - 450oC temperature interval and 600 mL/min constant flow rate nitrogen gas have been chosen as the carrier gas and the reaction time was considered to be 90 minutes for all experiments. Liquid products collected in experiments were separated by means of fractioned distillation process. For purposes of determining product distribution, the fractions, which were separated by distillation, were diluted in an appropriate solution for analysis of GC/MS. In the study conducted, it has been observed that the liquid product distribution obtained mainly consists of a mixture of saturated and unsaturated (heptane, heptane, octane, nonane, dodecane, etc.) hydrocarbons.展开更多
基金supported by UNIBAP 2011/45 Researche Project code.
文摘The rapid increase in the use of plastic materials in the recent years led to the accumulation of excessive amounts of plastic waste. The so-called thermoplastics such as PE, PP, PS, PVC and PET as well as materials that are derived from these are the type of plastic that is most used and consequently creates most of the waste. In this study, the original and waste forms of PE and PP plastic types have been chosen for thermal and catalytic degradation. As process parameter, 410oC - 450oC temperature interval and 600 mL/min constant flow rate nitrogen gas have been chosen as the carrier gas and the reaction time was considered to be 90 minutes for all experiments. Liquid products collected in experiments were separated by means of fractioned distillation process. For purposes of determining product distribution, the fractions, which were separated by distillation, were diluted in an appropriate solution for analysis of GC/MS. In the study conducted, it has been observed that the liquid product distribution obtained mainly consists of a mixture of saturated and unsaturated (heptane, heptane, octane, nonane, dodecane, etc.) hydrocarbons.