期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical Predictions of Laminar Forced Convection Heat Transfer with and without Buoyancy Effects from an Isothermal Horizontal Flat Plate to Supercritical Nitrogen
1
作者 K.S.Rajendra Prasad Sathya Sai +1 位作者 T.R.Seetharam adithya garimella 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期889-917,共29页
Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing dow... Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature. 展开更多
关键词 Supercritical nitrogen laminar flow numerical methods forced convection heat transfer isothermal horizontal surface
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部